部门与岗位:核心本地商业 - 业务研发平台 - 大模型
一面
- 自我介绍,问实习和论文,问的实习内容比较多,主要是和他们做的比较贴近的一个业务场景,问的也挺深的
- 除了你用到的 Qwen,还了解其他的大模型吗?说一下 LLaMA 的结构吧,它在结构和训练上都做了哪些贡献
- 了解大模型的位置编码吗?说一说 RoPE 的原理,为什么现在 RoPE 更受大家的欢迎?还了解其他的位置编码吗
- DeepSeek 有了解吗,DeepSeek 用到的 MLA 注意力是怎么做的?它可以直接用 RoPE 吗?为什么不能,它做了哪些优化
- 刚刚提到 MLA,那 MLA 是怎么对 KV Cache 做优化的
- 说一说大模型后训练的流程
- 代码:25. K 个一组翻转链表
一面考察八股比较多,主要在几个比较经典的大模型,LLaMA、Qwen 以及 DeepSeek,难度不算大。但是代码题比较难(竟然出 hard……
二面
- 自我介绍和讲论文讲实习,和一面类似,也是比较关注具体业务场景下做的工作,对论文的讨论并不多
- 串了一下 Qwen,主要是发布的这几版模型,都做了哪些贡献,包括数据、模型和训练这几个方面,不过问的不深
- Qwen 是怎么做长度外推的
- 了解大模型的解码策略吗,简要说一说吧
- 代码:199. 二叉树的右视图
- 聊天环节,职业规划等
二面整体来说比较轻松,问的不深入,比较泛,主要还是看对大模型的了解的多少
总结
美团就进行了两轮技术面,并且难度都不大。后来谈薪的时候才知道,原来我是个大白菜,怪不得面试的这么轻松,果断放弃了
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓