引言
自ChatGPT掀起热潮以来,众多AI大模型如雨后春笋般涌现,其中包括百度科技的文心一言、科大讯飞的讯飞星火、华为的盘古AI大模型、腾讯的混元AI大模型以及阿里哪吒大模型等。业界戏称这一现象为“百模大战”。不仅如此,这些通用AI大模型还逐渐渗透到各个垂直行业中,其中生命科学和医疗健康行业成为了拓展速度较快的一个领域。从2023年2月至10月初,国内市场上便出现了近50个针对医疗领域的大型模型。为了引导这一迅速发展的领域,确保技术应用的安全性与有效性,《医疗健康行业大模型应用技术要求》规范于2023年9月25日正式发布。该规范由中国信通院、国家卫健委、协和医院等多家医疗机构及公司共同参与制定,旨在为医疗大模型的发展提供指导方向和技术标准。
是德科技如何赋能医疗大模型应用?
当前,许多医疗大模型已经融入到实际的医疗实践中,并获得了应用。尽管不少专家认为AI未来有可能在某些方面取代医生的角色,但在临床应用中,AI(尤其是大模型技术)仍面临诸多技术风险与挑战,这些都需要进一步解决和完善。2023年发布的《人工智能大模型赋能医疗健康产业白皮书》详细阐述了以下四个方面的风险和挑战:首先,是技术风险,其核心问题在于数据的准确性和可靠性。其次,安全风险也不容忽视,它涵盖了数据安全以及患者隐私的安全保护。此外,还有伦理道德风险,涉及到使用AI技术可能带来的各种伦理问题。最后,应用挑战同样存在,这意味着将AI大模型有效地应用于医疗健康领域的过程还需要克服不少难题。
是德科技可以从几个方面促进医疗大模型的发展与应用。
医疗设备采集数据的准确性和可靠性
AI大模型的基石是海量的数据集,而医疗大模型的数据主要来源于医院的临床诊断数据或远程医疗诊断信息。这些宝贵的数据通过各种医疗设备终端采集,比如广为人知的核磁共振成像(MRI)、计算机断层扫描(CT)、超声波和内窥镜等系统。值得注意的是,全球领先的核磁共振仪制造商在研发与生产过程中均依赖是德科技的测试仪器。是德科技提供的医疗影像测试解决方案确保了医疗设备能够精准且可靠地采集患者数据。这类数据不仅是训练医疗AI大模型的核心素材,也是进行医疗诊断的基础。
医疗影像设备测试
此外,在现实世界中,随着无线射频新技术的广泛应用,空间中的无线信号和频谱变得日益复杂,这对有源医疗设备的电磁兼容性(EMC)测试提出了更高的挑战。在医院环境中,不仅存在各种如医疗影像等电子设备,还有远程监控、可穿戴或植入式医疗装置,以及用于办公的电脑、无线路由器,乃至病人使用的手机和周边的基站等。这些设备之间的相互干扰对医疗设备的EMC特性提出了极高的要求。是德科技的EMC接收机以及与合作伙伴共同开发的EMC测试系统,能够高效地验证医疗设备的EMC性能。这些解决方案有助于确保医疗设备在复杂的电磁环境中依然能稳定可靠地工作,从而保障医疗安全和质量。
医疗设备EMC测试
医疗数据传输的准确性和可靠性
随着数字医疗的不断发展,病人的原始数据——包括医学影像、体外化验结果等——需要通过医疗设备上的各种数字接口或无线通信通道,传输至服务器,供临床医生调阅和分析。医疗设备与无线技术的深度融合,使设备朝着智能化方向快速发展,例如基于5G的远程医疗系统、远程手术辅助系统以及医院内部的影像数据传输系统等,都是这一趋势的典型体现。在这一过程中,数据传输的准确性和可靠性至关重要。是德科技在数字接口测试和无线传输测试方面提供了一整套完善的测试解决方案,能够有效保障医疗数据在传输过程中的完整性和稳定性,从而降低医疗大模型在数据使用环节中的潜在风险,为其在临床场景中的广泛应用提供了坚实的技术支持。
医疗物联网设备测试
医疗信息化软件和安全测试
医疗AI大模型的发展,离不开各医疗机构在信息化建设方面的持续投入。例如,电子病历系统(EMR)、医院信息系统(HIS)以及医学影像存档与通信系统(PACS)等,构成了现代医院核心的信息化网络。这些系统不仅为医疗AI大模型提供了丰富的数据来源,也是推动智慧医疗发展的重要基础设施。在这一背景下,一方面需要实现医院内部各系统之间,乃至不同医疗机构之间的高效数据共享;另一方面,也必须在数据流通的过程中,严格保障数据的安全性与患者隐私。只有在确保数据合规、可控、可追溯的前提下,才能真正实现医疗大模型在临床应用中的准确性与安全性,从而推动AI技术在医疗领域的可持续发展。
医疗信息软件系统测试
除了医院内部的医疗信息化网络,包括各类医疗诊断设备的联网之外,当前医疗体系中还广泛存在跨院区、跨区域的“医共体”和“医联体”协同网络,以及支持远程诊疗的远程医疗网络。这些互联互通的系统大大提升了医疗资源的共享效率和服务覆盖范围。然而,随着网络边界的扩展,医疗网络安全问题也日益突出。近年来,全球范围内频发的医疗网络安全事故已引起广泛关注,不仅威胁到医院信息系统的正常运行,更可能直接影响到医疗设备的功能安全以及患者的生命安全。为此,医院每年都会对内部网络系统开展全面的“安全保护”测试,以排查潜在风险,提升整体网络安全防护能力,保障医疗服务的安全与连续性。
医疗互联网安全测试
是德科技的软件测试方案以及网络安全测试方案不但可以测试EMR等信息系统的性能,还可以测试医疗网络的安全性,为医疗大模型的应用保驾护航。
AI技术的快速发展,必将持续对医疗健康技术产生深远的影响。如前几天横空出世的Sora人工智能文生视频大模型,会进一步推进医疗技术的发展。你觉着Sora对医疗产业会有哪些新的影响?
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓