大模型(Large Language Models, LLMs)和智能体(Agent)虽然在某些应用场景中有交集,但它们的概念、功能和技术实现上有显著的区别。以下是详细的对比:
- 定义与目标
大模型(LLM)
定义:大模型是指那些参数量巨大、训练数据丰富、具有强大语言理解和生成能力的深度学习模型,如GPT、BERT等。
目标:主要目标是通过大量文本数据的学习,掌握语言模式和语义信息,以实现高质量的自然语言处理任务,如文本生成、翻译、问答等。
智能体(Agent)
定义:智能体是一种能够自主感知环境、做出决策并执行动作的实体,可以是物理上的机器人,也可以是软件系统。
目标:智能体的目标是在特定环境中完成复杂任务,这可能包括与人类互动、操作物理对象、管理资源等。智能体通常具备感知、推理、规划和行动的能力。 - 核心能力
大模型(LLM)
语言理解与生成:擅长处理文本数据,进行语言理解和生成。
知识表示:通过大规模预训练数据学习到丰富的语言知识和模式。
应用范围:主要用于自然语言处理任务,如文本分类、情感分析、机器翻译等。
智能体(Agent)
感知与决策:能够从环境中获取信息(感知),并根据这些信息做出决策。
行动执行:不仅限于文本处理,还可以执行物理或虚拟环境中的任务。
多模态处理:可以处理多种类型的数据,如图像、声音、文本等,并根据这些数据做出综合决策。
长期规划与学习:具备长期规划能力,能够在动态环境中不断学习和优化行为策略。 - 应用场景
大模型(LLM)
自然语言处理:如聊天机器人、自动写作、机器翻译等。
内容生成:生成文章、诗歌、故事等创意内容。
问答系统:回答用户提出的问题,提供信息查询服务。
智能体(Agent)
自动化系统:如智能家居控制系统、自动驾驶汽车等。
游戏AI:在游戏中扮演角色,与玩家互动。
客户服务:如智能客服系统,不仅可以回答问题,还可以协助解决实际问题。
工业自动化:如工厂中的机器人手臂,执行复杂的制造任务。 - 技术实现
大模型(LLM)
基于深度学习:通常使用神经网络架构,如Transformer,进行训练。
自监督学习:通过大规模未标注数据进行预训练,再通过少量标注数据进行微调。
智能体(Agent)
结合多种技术:可能使用深度学习、强化学习、规则系统等多种技术。
强化学习:特别是对于需要长期规划和动态适应的任务,智能体常常依赖强化学习来优化决策过程。
感知模块:如摄像头、传感器等硬件设备用于收集环境信息。 - 交互方式
大模型(LLM)
文本交互:主要通过文本输入输出与用户或其他系统进行交互。
智能体(Agent)
多样化交互:可以通过文本、语音、视觉等多种方式与环境或用户进行交互。 - 持续学习与适应
大模型(LLM)
静态更新:通常在发布后不会频繁更新,除非有新的大规模数据或模型结构改进。
智能体(Agent)
动态适应:可以在运行过程中不断学习和适应新环境,特别是在实时反馈和强化学习场景中。
总结
大模型(LLM)和智能体(Agent)各有侧重,LLMs专注于语言理解和生成,而智能体则更广泛地应用于需要感知、决策和行动的任务中。两者在某些应用场景中有交集,例如智能客服系统既可以利用LLMs的语言处理能力,也可以作为智能体的一部分来执行更复杂的任务。
随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。
那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。