5个小技巧提升Python运行速度_python运行加速脚本

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

             26 LOAD_CONST               5 (5)
             28 BINARY_SUBSCR
             30 STORE_FAST               1 (x)

  5          32 LOAD_FAST                1 (x)
             34 RETURN_VALUE
-----:使用元组的机器码:------
  7           0 LOAD_CONST               1 ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
              2 STORE_FAST               0 (data)

  8           4 LOAD_FAST                0 (data)
              6 LOAD_CONST               2 (5)
              8 BINARY_SUBSCR
             10 STORE_FAST               1 (x)

  9          12 LOAD_FAST                1 (x)
             14 RETURN_VALUE

看下列表的机器码,冗长而多余!


### 2. 善用强大的内置函数和第三方库


如果你正在使用python并且仍在自己编写一些通用函数(比如加法、减法),那么是在侮辱python。 Python有大量的库和内置函数来帮助你不用编写这些函数。 如果研究下,那么你会惊奇地发现几乎90%的问题已经有第三方包或内置函数来解决。



> 
> 可以通过访问[官方文档](https://bbs.csdn.net/topics/618317507)查看所有内置函数。你也可以在[wiki python](https://bbs.csdn.net/topics/618317507)上找到更多使用内置函数的场景。
> 
> 
> 


比如,现在我们想合并列表中的所有单词为一个句子,比较法自己编写和调用库函数的区别:



❌ 正常人能想到的方法

@timeshow
def f1(list):
s =“”
for substring in list:
s += substring
return s

✅ pythonic 的方法

@timeshow
def f2(list):
s = “”.join(list)
return s

l = [“I”, “Love”, “Python”] * 1000 # 为了看到差异,我们把这个列表放大了
f1(l)
f2(l)


运行输出:



    f1 : 0.000227 sec
    f2 : 0.000031 sec

### 3. 少用循环


* 用 **列表推导式** 代替循环
* 用 **迭代器** 代替循环
* 用 **filter()** 代替循环
* 减少循环次数,精确控制,不浪费CPU



返回n以内的可以被7整除的所有数字。

❌ 正常人能想到的方法:

@timeshow
def f_loop(n):
L=[]
for i in range(n):
if i % 7 ==0:
L.append(i)
return L

✅ 列表推导式

@timeshow
def f_list(n):
L = [i for i in range(n) if i % 7 == 0]
return L

✅ 迭代器

@timeshow
def f_iter(n):
L = (i for i in range(n) if i % 7 == 0)
return L

✅ 过滤器

@timeshow
def f_filter(n):
L = filter(lambda x: x % 7 == 0, range(n))
return L

✅ 精确控制循环次数

@timeshow
def f_mind(n):
L = (i*7 for i in range(n//7))
return L

n = 1_000_000
f_loop(n)
f_list(n)
f_iter(n)
f_filter(n)
f_mind(n)


输出为:



f_loop : 0.083017 sec
f_list : 0.056110 sec
f_iter : 0.000015 sec

f_filter : 0.000003 sec
f_mind : 0.000002 sec


谁快谁慢,一眼便知!


`filter` 配合`lambda`大法就是屌!!!


### 4. 避免循环重复计算


如果你有一个迭代器,必须用它的元素做一些耗时计算,比如匹配正则表达式。你应该将正则表达式模式定义在循环之外,因为最好只编译一次模式,而不是在循环的每次迭代中一次又一次地编译它。


只要有可能,就应该尝试在循环外进行尽可能多的运算,比如将函数计算分配给局部变量,然后在函数中使用它。



❌ 应改避免的方式:

@timeshow
def f_more(s):
import re
for i in s:
m = re.search(r’a*[a-z]?c’, i)

✅ 更好的方式:

@timeshow
def f_less(s):
import re
regex = re.compile(r’a*[a-z]?c’)
for i in s:
m = regex.search(i)
s = [“abctestabc”] * 1_000
f_more(s)
f_less(s)


输出为:



f_more : 0.001068 sec
f_less : 0.000365 sec

### 5. 少用内存、少用全局变量


内存占用是指程序运行时使用的内存量。为了让Python代码运行得更快,应该减少程序的内存使用量,即尽量减少变量或对象的数量。


Python 访问局部变量比全局变量更有效。在有必要之前,应该始终尝试忽略声明全局变量。一个在程序中定义过的全局变量会一直存在,直到整个程序编译完成,所以它一直占据着内存空间。另一方面,局部变量访问更快,且函数完成后即可回收。因此,使用多个局部变量比使用全局变量会更好。



❌ 应该避免的方式:

message = “Line1\n”
message += “Line2\n”
message += “Line3\n”

✅ 更好的方式:

l = [“Line1”,“Line2”,“Line3”]
message = ‘\n’.join(l)

❌ 应该避免的方式:

x = 5
y = 6
def add():
return x+y
add()

✅ 更好的方式:

def add():
x = 5
y = 6
return x+y
add()


### 小节


以上就是我们分享的**5个加速python运行**的小技巧,希望对你有用!


欢迎大家点赞、收藏,支持!


**[pythontip](https://bbs.csdn.net/topics/618317507)** 出品,Happy Coding!


公众号: **夸克编程**





如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费**学习**大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。



### 一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。



![](https://img-blog.csdnimg.cn/img_convert/9f49b566129f47b8a67243c1008edf79.png)

### 二、学习软件



工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。



![](https://img-blog.csdnimg.cn/img_convert/8c4513c1a906b72cbf93031e6781512b.png)



### 三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

![](https://img-blog.csdnimg.cn/img_convert/eec417a3d4d977b313558a11d3c13e43.png)



### 四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。



![](https://img-blog.csdnimg.cn/img_convert/ec690501ea1dbe2cb209cbf4013c2477.png)  

![](https://img-blog.csdnimg.cn/img_convert/3eaeaa6747419c9d86c72e0d10d0a6a2.png)



### 四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。



![](https://img-blog.csdnimg.cn/img_convert/252731a671c1fb70aad5355a2c5eeff0.png)



### 五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

![](https://img-blog.csdnimg.cn/img_convert/6c361282296f86381401c05e862fe4e9.png)

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值