我用Python把抖音上的美女图片转字符画,期望的AI目标更进一步【机器学习算法实战小项目,k聚类算法图片转化字符画】

2.numpy提取图片矩阵数据

3.k均值算法获取图片的分类

工具使用


开发工具: pycharm

开发环境: Windows10,Python3.7

使用工具包: cv2,numpy

项目准备


  • 你所需要转换对应的图片 -cv2的工具包的下载: pip install opencv-python

CV2是什么意思

CV2指的是OpenCV2,OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库copy,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

OpenCV 拥有包括 500 多个C函数的跨平台的中、百高层 API。它不依赖于其它的外部库——尽管也可以使用某些外部库。

项目思路解析


首先准备需要处理的图片

在这里插入图片描述

利用opencv读取对应的图片数据

  • 读取图片

fp = r"1.jpg"

img = cv2.imread(fp)

print(img.shape)

读取的数据返回的是矩阵元组数据分别是(高度, 宽度,通道数)

  • 将图片转换成灰度 -通过黑白两种颜色来区分图片颜色的深浅 -利用kmeans算法进行区分画点

height, width, *_ = frame.shape

frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

frame_array = np.float32(frame_gray.reshape(-1))

compactness, labels, centroids = cv2.kmeans(frame_array, K, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)

kmeans:返回三个参数 compactness:紧密度,返回每个点到相应重心的距离的平方和 labels:结果标记,每个成员被标记为分组的序号,如 0,1,2,3,4…等 centers:由聚类的中心组成的数组

  • 将的到的对应的中心点进行排序 -0最暗, 分类的多少是由自己决定的 -排序之后在将对应的图片相素点跟换成中心点的分类 -就能得到图片对应的颜色深浅关系 -颜色暗的用字符代替 -颜色浅的可以跟换成空白,或者横杆 -提现出颜色的差距感 -替换之后在将其放入到新的画布 -拼接成新的图片(注意图片的缩放比列)

简易源码分享


import cv2

import random

import numpy as np

def img2strimg(frame, K=3):

height, width, *_ = frame.shape

frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

转换数据类型,一列显示

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值