大数据最全【详解】手撕 一维、二维、三维差分数组原理(附图解(1),2024年最新大数据开发0基础方法类

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

j

]

=

a

[

i

]

[

j

]

a

[

i

1

]

[

j

]

a

[

i

]

[

j

1

]

a

[

i

1

]

[

j

1

]

\color{Red}b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1]

b[i][j]=a[i][j]−a[i−1][j]−a[i][j−1]+a[i−1][j−1]



    即利用上图红色大面积  





a 


[ 


i 


] 


[ 


j 


] 




\color{Maroon}a[i][j] 


a[i][j]减去两个小面积  





a 


[ 


i 


− 


1 


] 


[ 


j 


] 




\color{Turquoise}a[i- 1][j] 


a[i−1][j]、  





a 


[ 


i 


] 


[ 


j 


] 




\color{Green}a[i][j] 


a[i][j],由于两个小面积公共的部分`a[i-1][j -1]`被减去了 2 次,故要加回来 1 次  





a 


[ 


i 


− 


1 


] 


[ 


j 


− 


1 


] 




\color{Yellow}a[i - 1][j - 1] 


a[i−1][j−1]。


**( 


2 


) 


二 


维 


区 


间 


修 


改 




\color{Purple}(2) 二维区间修改 


(2)二维区间修改**







     



对于一维区间修改的操作,我们只需要修改区间的两个端点的b[]值。那么相应地,在二维情况下,一块区间是一个矩阵,由4个端点,只需要修改这 4个 b[][]值即可。如下图所示,

在这里插入图片描述

当我们对坐标点 (x1, y1) ~ (x2, y2)所围成的区间进行修改时,对应的4个端点的操作应为:

b[x1][y1] += c; // 二维区间的起点
b[x1][y2 + 1] -= c; // 把 x看成常数,y从 y1 到 y2
b[x2 + 1][y1] -= c;// 把 y看成常熟,x从 x1 到 x2
b[x2 + 1][y2 + 1] += c;// 由于前面两式把 c 减去了 2 次,故要加回 1 次

1.2 例题分析

【例题1】Monitor

题意:Xiaoteng 有一个 n×m 的矩形庄稼地,为了抓到小偷,安装了 p 个监控,每个监控都有一个矩形的监视范围,左上角为 (x1,y1),右下角为 (x2,y2)。小偷们会来偷 q 次,每次小偷们的作案地点都是一个矩形区域,左上角为 (x1,y1),右下角为 (x2,y2)。问每次小偷们作案时,能否看到全部的小偷。

思路:将每个监控的矩形监视区域里的每个数都加上 1,都操作在差分数组上。求差分数组的前缀和得到原数组,如果原数组中的值大于 1,说明该点被多个监控覆盖,我们只需要记 1 个即可。对于小偷们每次作案的矩形区域,看监控区域是否全部覆盖(是否全是1),如果全部覆盖(作案矩形同监控矩形的值相等)则输出 YES,否则,输出NO。

AcCode

#include<bits/stdc++.h>

using namespace std;
typedef long long  LL;

int main()
{
    int n, m;
    
    while(~scanf("%d%d", &n, &m))
    {
        vector<vector<int>> a(n + 10, vector<int>( m + 10, 0));
        
        int k;
        scanf("%d", &k);
        while(k -- )
        {
            int x1, y1, x2, y2;
            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
            a[x1][y1] += 1;
            a[x2 + 1][y1] -= 1;
            a[x1][y2 + 1] -= 1;
            a[x2 + 1][y2 + 1] += 1;
        }
        
        // 求差分数组的前缀和,得到原数组的值
        for(int i = 1; i <= n; i ++ )
           for(int j = 1; j <= m; j ++ )
               a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
        // 如果被该区域被监控覆盖多次,则只记一次
        for(int i = 1; i <= n; i ++ )
            for(int j = 1; j <= m; j ++ )
                if(a[i][j] > 1) a[i][j] = 1;
        
        // 对于小偷们每次作案的矩形区域,看监控区域是否全部覆盖(是否全是1)
        int p;
        scanf("%d", &p);
        while(p -- )
        {
            int x1, y1, x2, y2;
            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
            
            int s1 = (x2 - x1 + 1) \* (y2 - y1 + 1);
            int s2 = f[x2][y2] - f[x1 - 1][y2] - f[x2][y1 - 1] + f[x1 - 1][y1 - 1];
            
            if(s1 == s2) puts("YES");
            else puts("NO");
        }
    }
    return 0;
}

3.三维差分

1.1 基本概念



    三维已是人类空间想象的一个大跨度,其差分难度较为复杂,不过没关系,下面我们将利用空间立体图来逐一理解。


**( 


1 


) 


三 


维 


差 


分 


的 


定 


义 




\color{Purple}(1)三维差分的定义 


(1)三维差分的定义**







     



元素值用三维数组 a[][][]来定义,差分数组b[][][]也是三维的。与之前低维度的差分类似,把三维差分想象成立体空间的操作。与之对应的小立方块有 8 个顶点,所以三维的区间需要修改 8 个b[][][]的值。



    在二维差分中,`a[][]` 是差分数组 `b[][]`的前缀和,即原点坐标 (1,1)和 坐标(i,j)围成的矩阵面积。







     



在三维差分中,a[][][] 是差分数组 b[][][]的前缀和,即原点坐标 (1, 1, 1) 和 坐标(i, j, k)围成的立体体积。同样地,我们把每个b[][][]看成一个小立方体,在坐标(1, 1, 1) ~ (i , j,k)所围成的空间中,所有小立体加起来的总体积即为a[i][j][k]。如下图所示,每个小立方体由 8 个端点定义。坐标点(i,j,k)的值是 a[i][j][k]; 图中小立方体的体积是差分数组 b[i][j][k]的值。

在这里插入图片描述



    类似的,在三维情况下,差分就变成了相邻的`a[][][]`的 ”体积差“。那么如何来写出差分的递推计算公式呢?


观察前面一、二维的前缀和我们可以发现,其前缀和规律十分吻合容斥原理。


![在这里插入图片描述](https://img-blog.csdnimg.cn/a79059b5c1d045958ee2876f347bdd24.png#pic_center)


即对于  





维 


度 


为 


t 




\color{Red}维度为 t 


维度为t 的前缀和,记 **S(t)** 为其前缀和的递推式,则我们有:  
 




S 


( 


t 


) 


= 


a 


[ 


t 


] 


+ 



∑ 



n 


= 


1 



∞ 



( 


− 


1 



) 



( 


n 


− 


1 


) 




S 


( 


[ 


t 


− 


1 


] 


的 


组 


合 


形 


式 


) 


, 



n 


  


为 


− 


1 


的 


个 


数 




S(t) = a[t]+ \sum\_{n = 1}^{∞}(-1)^{(n -1)}S( [t- 1]的组合形式),\color{CadetBlue}n~为 -1的个数 


S(t)=a[t]+n=1∑∞​(−1)(n−1)S([t−1]的组合形式),n 为−1的个数  
所以对于三维的差分数组`b[][][]`,其递推式如下:  
 





b 


[ 


i 


] 


[ 


j 


] 


[ 


k 


] 


= 


s 


[ 


i 


] 


[ 


j 


] 


[ 


k 


] 


− 


s 


[ 


i 


− 


1 


] 


[ 


j 


] 


[ 


k 


] 


− 


s 


[ 


i 


] 


[ 


j 


− 


1 


] 


[ 


k 


] 


− 


s 


[ 


i 


] 


[ 


j 


] 


[ 


k 


− 


1 


] 


+ 


s 


[ 


i 


− 


1 


] 


[ 


j 


− 


1 


] 


[ 


k 


] 


+ 


s 


[ 


i 


− 


1 


] 


[ 


j 


] 


[ 


k 


− 


1 


] 


+ 


s 


[ 


i 


] 


[ 


j 


− 


1 


] 


[ 


k 


− 


1 


] 


− 


s 


[ 


i 


− 


1 


] 


[ 


j 


− 


1 


] 


[ 


k 


− 


1 


] 




\color{Red}b[i][j][k] = s[i][j][k]-s[i - 1][j][k] - s[i][j - 1][k] - s[i][j][k - 1] + s[i - 1][j - 1][k] + s[i - 1][j][k - 1] + s[i][j - 1][k - 1] - s[i - 1][j - 1][k - 1] 


b[i][j][k]=s[i][j][k]−s[i−1][j][k]−s[i][j−1][k]−s[i][j][k−1]+s[i−1][j−1][k]+s[i−1][j][k−1]+s[i][j−1][k−1]−s[i−1][j−1][k−1]  
我们发现当维度为 t 的时候容斥的时间复杂度是  





2 


t 




2^t 


2t,而前缀和的总时间复杂度为  **O 


( 



n 


t 




2 


t 



) 



O(n ^t2^t) 


O(nt2t)**,即随着维度的升高,时间复杂度增大的很快,不过是可以优化到  **O 


( 



n 


t 



t 


) 



O(n^tt) 


O(ntt)** 的,但在此不展开讨论,因为在算法竞赛中很少遇到3维以上的前缀和,而对于 `t≤3`时 




O 


( 



n 


t 




2 


t 



) 



O(n ^t2^t) 


O(nt2t) 与 




O 


( 



n 


t 



t 


) 



O(n^tt) 


O(ntt)差别并不大,有兴趣的可自行查阅资料。


**( 


2 


) 


三 


维 


区 


间 


修 


改 




\color{Purple}(2) 三维区间修改 


(2)三维区间修改**







     



在三维情况下,我们修改的是一个立方体,有8个顶点,故我们只需要修改这8个顶点的 差分数组b[][][]的值即可。给出坐标点

(

x

1

,

y

1

)

(x1 , ~y1)

(x1, y1) ~

(

x

2

,

y

2

)

(x2 ,~y2)

(x2, y2)定义的区间,如下图所示

在这里插入图片描述

三维差分空间图示

三维差分空间图示
那么对应的 8个 b[][][]的修改如下:

// 前面
b[x1][y1][z1] += c; // 坐标起点
b[x2 + 1][y1][z1] -= c; // 右下顶点的右边一个点
b[x1][y1][z2 + 1] -= c; // 左上顶点的上面一个点
b[x2 + 1][y1][z2 + 1] += c; // 右上顶点的斜右上方一个点

// 后面
b[x1][y2 + 1][z1] -= c; // 左下顶点的后面一个点
b[x2 + 1][y2 + 1][z1] += c; // 右下顶点的斜右后方一个点
b[x1][y2 + 1][z2 + 1] += c; // 左上顶点的斜后上方一个点
b[x2 + 1][y2 + 1][z2 + 1] -= c; // 右上顶点的斜右上后方一个点,即区间终点的后一个点

可以发现坐标偏移加 1 都与终点相关,为了方便记忆,我们可以把它按照二进制的排列来写,若二进制中出现偶数个 正1为正,奇数个正1为负,与前缀和恰好相反(前缀和是偶数个 负1 为负,奇数个 负1为正):

{0, 0, 0,  1} // x1, y1, z1
{0, 0, 1, -1}// x1, y1, z2 + 1
{0, 1, 0, -1}// x1, y2 + 1, z1
{0, 1, 1,  1}// x1, y2 + 1, z2 + 1

{1, 0, 0, -1}// x2 + 1, y1, z1
{1, 0, 1,  1}// x2 + 1, y1, z2 + 1
{1, 1, 0,  1}// x2 + 1, y2 + 1, z1
{1, 1, 1, -1}// x2 + 1, y2 + 1, z2 + 1

1.2 例题分析

【例题1】三体攻击(蓝桥杯2018年省赛 A组)

题目描述】:



    三体人将对地球发起攻击。为了抵御攻击,地球人派出了`n = A × B × C`艘战舰,在太空中排成一个 A 层 B 行 C 列的立方体。其中,第 i 层第 j 行第 k 列的战舰(记为战舰`(i, j, k)`)的生命值为 `s(i, j, k)`。  
 




     



三体人将会对地球发起 m 轮“立方体攻击”,每次攻击会对一个小立方体中的所有战舰都造成相同的伤害。具体地,第 t 轮攻击用 7 个参数 x1, x2, y1, y2, z1, z2, d描述; 所有满足i∈[x1, x2], j∈[y1, y2], k∈[z1, z2]的战舰 (i, j, k)会受到 d 的伤害。如果一个战舰累计受到的总伤害超过其防御力,那么这个战舰会爆炸。



    地球指挥官希望你能告诉他,第一艘爆炸的战舰是在哪一轮攻击后爆炸的。


【**输入**】 :







     



第一行包括 4 个正整数 A, B, C, m



    第二行包含`A × B × C`个整数,其中第 `((i − 1)×B + (j − 1)) × C + (k − 1)+1`个数为 `s(i, j, k)`;  
 




     



第 3 到第 m + 2 行中,第 (t − 2) 行包含 7 个正整数 x1, x2, y1, y2, z1, z2, d

A

×

B

×

C

1

0

6

,

m

1

0

6

,

0

s

(

i

,

j

,

k

)

,

d

1

0

9

A × B × C ≤ 10^6, m ≤ 10^6, 0 ≤ s(i, j, k), d ≤ 10^9

A×B×C ≤ 106, m ≤ 106, 0 ≤ s(i, j, k), d ≤ 109。

输出】:



    输出第一个爆炸的战舰是在哪一轮攻击后爆炸的。保证一定存在这样的战舰。


分析:如果对于每次攻击我们都枚举每个点生命值,对于  




n 


= 


1 



0 


6 




n=10^6 


n=106 个点, 




m 


= 


1 



0 


6 




m = 10 ^6 


m=106次攻击来说,时间复杂度为 O(nm),肯定会TLE。







     



故此时我们需要在差分数组查询空间内每个元素是否小于0,但是计算空间上的每个元素的值是 O(n) 的,对于m次攻击,复杂度仍然是 O(nm)。可见单纯使用差分数组是不行的。为此我们需要利用二分法:题目保证一定存在这样一个战舰在某一轮攻击后会爆炸,即从 第 1 次到 m 次修改,必定有一次是临界值。在临界值以前,战舰的生命肯定是大于 0 的,在临界值后,若战舰出现了负值,则之后一直都会是负值。那么对 m 进行二分,就能在 O(logm) 次内找到这个临界值,这就是答案。总复杂度为 O(nlogm)。



   细节处理:如果对于数组空间我们每一维度都开到 




1 



0 


6 




10^6 


106,必定会MLE。为了避免这一问题,我们将三维数组拍平为一维数组,即采用压维的方式,对于 A × B × C =  




1 



0 


6 





![img](https://img-blog.csdnimg.cn/img_convert/3a04eb126e33a426268207c68784a2ac.png)
![img](https://img-blog.csdnimg.cn/img_convert/78a3875ffc610841c0b58125694c6131.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

  


1 



0 


6 



, 


  


m 


  


≤ 


  


1 



0 


6 



, 


  


0 


  


≤ 


  


s 


( 


i 


, 


  


j 


, 


  


k 


) 


, 


  


d 


  


≤ 


  


1 



0 


9 




A × B × C ≤ 10^6, m ≤ 10^6, 0 ≤ s(i, j, k), d ≤ 10^9 


A×B×C ≤ 106, m ≤ 106, 0 ≤ s(i, j, k), d ≤ 109。


【**输出**】:







     



输出第一个爆炸的战舰是在哪一轮攻击后爆炸的。保证一定存在这样的战舰。

分析:如果对于每次攻击我们都枚举每个点生命值,对于

n

=

1

0

6

n=10^6

n=106 个点,

m

=

1

0

6

m = 10 ^6

m=106次攻击来说,时间复杂度为 O(nm),肯定会TLE。



    故此时我们需要在**差分数组**查询空间内每个元素是否小于0,但是计算空间上的每个元素的值是 O(n) 的,对于m次攻击,复杂度仍然是 O(nm)。可见单纯使用差分数组是不行的。为此我们需要利用**二分法**:题目保证一定存在这样一个战舰在某一轮攻击后会爆炸,即从 第 1 次到 m 次修改,必定有一次是临界值。在临界值以前,战舰的生命肯定是大于 0 的,在临界值后,若战舰出现了负值,则之后一直都会是负值。那么对 m 进行二分,就能在 O(logm) 次内找到这个临界值,这就是答案。总复杂度为 O(nlogm)。







    



~~~ 


   细节处理:如果对于数组空间我们每一维度都开到 




1 



0 


6 




10^6 


106,必定会MLE。为了避免这一问题,我们将三维数组拍平为一维数组,即采用压维的方式,对于 A × B × C =  




1 



0 


6 





[外链图片转存中...(img-0vDNGaAQ-1715427104412)]
[外链图片转存中...(img-aNpRdUu6-1715427104412)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

  • 23
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值