2024年最全【数模之数据分析-2】_数模 数据分析(3),2024年最新2024大数据开发研发必问高级面试题

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

yx = np.random.randint(8, size=(5, 3)) # 返回的是随机的整数,左闭右开
print(yx)

随机数

s = np.random.rand()
print(s)

随机样本

yb = np.random.random_sample()
print(yb)

区间内的随机数

qjs = np.random.randint(0, 10, 6)
print(qjs)

高斯分布

mu, sigma = 0, 0.1
fb = np.random. normal(mu, sigma, 8)
print(fb)

指定精度

zd = np.set_printoptions(precision=3)
print(fb)

洗牌

xps = np.arange(10)
np.random.shuffle(xps)
print(xps)

随机的种子

np.random.seed(100)
mu, sigma = 0, 0.1
z = np.random.normal(mu, sigma, 8)
print(z)


### 相关程序运行如下:



[[0.63334441 0.85097104 0.59019264 0.310542 0.90493224 0.64755 ]
[0.26229661 0.22710308 0.8936011 0.42837496 0.06484865 0.01209753]]
[[3 5 4]
[6 4 0]
[5 3 5]
[4 2 7]
[2 0 3]]
0.5814122350900927
0.37162507133518075
[1 0 1 4 6 2]
[ 0.04351687 -0.02026214 0.02332794 -0.09842403 0.06876269 0.02239188
-0.06339656 0.11343825]
[ 0.044 -0.02 0.023 -0.098 0.069 0.022 -0.063 0.113]
[6 2 4 3 7 0 1 5 8 9]
[-0.175 0.034 0.115 -0.025 0.098 0.051 0.022 -0.107]




---


print()


## 文件读写:


![在这里插入图片描述](https://img-blog.csdnimg.cn/df7246b4f4a74cd08c2bf01019cbfa6f.png)



data = []
with open(‘np2.txt’) as f:
for line in f:
fil = line.split()
f_data = [float(i) for i in fil]
data.append(f_data)
data = np.array(data)
print(data)

法二–简便

delimiter 分隔符 | skiprows=1 去掉几行 | usecols = (0, 1, 4) 指定使用哪几列

data = np.loadtxt(‘np2.txt’, delimiter=’ ', skiprows=1)
print(data)


### 相关程序运行如下:



[[1. 2. 3. 4. 5. 6.]
[4. 5. 6. 7. 8. 9.]]
[4. 5. 6. 7. 8. 9.]




---


print()


## 数组保存:



xr = np.array([
[1, 2, 3],
[6, 7, 8]
])
np.savetxt(‘np2_1.txt’, xr)

np.savetxt(‘np2_2.txt’, xr, fmt=‘%d’)

np.savetxt(‘np2_3.txt’, xr, fmt=‘%d’, delimiter=‘,’)

np.savetxt(‘np2_4.txt’, xr, fmt=‘%.2f’, delimiter=’ ')

读写array结构

dx_array = np.array([
[5, 2, 0],
[1, 4, 9]
])
np.save(‘np2_1.npy’, dx_array)

dx = np.load(‘np2_1.npy’)
print(dx)


### 相关程序运行如下:


![在这里插入图片描述](https://img-blog.csdnimg.cn/e8e4761db66242f2bcdec9c5f4b18ce0.png)  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/fb384f1eb070483a941461f9d2497446.png)  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/6b5968cbc4824756b7b9359413c820d8.png)  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/edb85a5846f54cbf95980c05032f696f.png)



[[5 2 0]
[1 4 9]]




---


## Numpy练习题:



import numpy as np # 导入Numpy库


### 1-打印当前Numpy版本



print(np.version)


### 2-构造一个全零的矩阵,并打印其占用的内存大小



ojz = np.zeros((5, 5))
print(ojz)
print(“%d bytes” % (ojz.size*ojz.itemsize))


### 3-打印一个函数的帮助文档,比如numpy.add



bz = help(np.info(np.add))
print(bz)


### 4-创建一个2~20的数组,并将其逆序



sz = np.arange(2, 21, 1)
print(sz)
sz = sz[::-1]
print(sz)


### 5-找到一个数组中不为0的索引



sy = np.nonzero([2, 53, 12, 43, 0, 0, 0, 23, 90])
print(sy)


#### 相关程序运行如下:



1.22.3
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
200 bytes
add(x1, x2, /, out=None, *, where=True, casting=‘same_kind’, order=‘K’, dtype=None, subok=True[, signature, extobj])

Add arguments element-wise.

Parameters

x1, x2 : array_like
The arrays to be added.
If x1.shape != x2.shape, they must be broadcastable to a common
shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the out array will be set to the ufunc result.
Elsewhere, the out array will retain its original value.
Note that if an uninitialized out array is created via the default
out=None, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:ufunc docs <ufuncs.kwargs>.

Returns

add : ndarray or scalar
The sum of x1 and x2, element-wise.
This is a scalar if both x1 and x2 are scalars.

Notes

Equivalent to x1 + x2 in terms of array broadcasting.

Examples

np.add(1.0, 4.0)
5.0
x1 = np.arange(9.0).reshape((3, 3))
x2 = np.arange(3.0)
np.add(x1, x2)
array([[ 0., 2., 4.],
[ 3., 5., 7.],
[ 6., 8., 10.]])

The + operator can be used as a shorthand for np.add on ndarrays.

x1 = np.arange(9.0).reshape((3, 3))
x2 = np.arange(3.0)
x1 + x2
array([[ 0., 2., 4.],
[ 3., 5., 7.],
[ 6., 8., 10.]])
Help on NoneType object:

class NoneType(object)
| Methods defined here:
|
| __bool__(self, /)
| self != 0
|
| __repr__(self, /)
| Return repr(self).
|
| ----------------------------------------------------------------------
| Static methods defined here:
|
| __new__(*args, **kwargs) from builtins.type
| Create and return a new object. See help(type) for accurate signature.

None
[ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]
[20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2]
(array([0, 1, 2, 3, 7, 8], dtype=int32),)




---


### 6-随机构造一个3\*3矩阵,并打印其中最大与最小值



zz = np.random.random((3, 3))
print(zz.max())
print(zz.min())


### 7-构造一个5\*5的矩阵,令其值都为1,并在最外层加上一圈0



jz = np.ones((5, 5))
jz = np.pad(jz, pad_width=1, mode=‘constant’, constant_values=0)
print(jz)



print(help(np.pad)) # 帮助文档


### 8-构造一个shape为(6, 7, 8)的矩阵,并找到第100个元素的索引值



sy8 = np.unravel_index(100, (6, 7, 8))
print(sy8)


### 9-对一个5\*5的矩阵做归一化操作



cz = np.random.random((5, 5))
cz_max = cz.max()
cz_min = cz.min()
cz = (cz-cz_min)/(cz_max-cz_min)
print(cz)


### 10-找到两个数组中相同的值



sz1 = np.random.randint(0, 20, 8)
sz2 = np.random.randint(0, 20, 8)
print(sz1)
print(sz2)

print(np.intersect1d(sz1, sz2))


#### 相关程序运行如下:



0.9786237847073697
0.10837689046425514
[[0. 0. 0. 0. 0. 0. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 1. 1. 1. 1. 1. 0.]
[0. 0. 0. 0. 0. 0. 0.]]
Help on function pad in module numpy:

pad(array, pad_width, mode=‘constant’, **kwargs)
Pad an array.

Parameters
----------
array : array_like of rank N
    The array to pad.
pad_width : {sequence, array_like, int}
    Number of values padded to the edges of each axis.
    ((before_1, after_1), ... (before_N, after_N)) unique pad widths
    for each axis.
    ((before, after),) yields same before and after pad for each axis.
    (pad,) or int is a shortcut for before = after = pad width for all
    axes.
mode : str or function, optional
    One of the following string values or a user supplied function.

    'constant' (default)
        Pads with a constant value.
    'edge'
        Pads with the edge values of array.
    'linear\_ramp'
        Pads with the linear ramp between end_value and the
        array edge value.
    'maximum'
        Pads with the maximum value of all or part of the
        vector along each axis.
    'mean'
        Pads with the mean value of all or part of the
        vector along each axis.
    'median'
        Pads with the median value of all or part of the
        vector along each axis.
    'minimum'
        Pads with the minimum value of all or part of the
        vector along each axis.
    'reflect'
        Pads with the reflection of the vector mirrored on
        the first and last values of the vector along each
        axis.
    'symmetric'
        Pads with the reflection of the vector mirrored
        along the edge of the array.
    'wrap'
        Pads with the wrap of the vector along the axis.
        The first values are used to pad the end and the
        end values are used to pad the beginning.
    'empty'
        Pads with undefined values.

        .. versionadded:: 1.17

    <function>
        Padding function, see Notes.
stat_length : sequence or int, optional
    Used in 'maximum', 'mean', 'median', and 'minimum'.  Number of
    values at edge of each axis used to calculate the statistic value.

    ((before_1, after_1), ... (before_N, after_N)) unique statistic
    lengths for each axis.

    ((before, after),) yields same before and after statistic lengths
    for each axis.

    (stat_length,) or int is a shortcut for before = after = statistic
    length for all axes.

    Default is ``None``, to use the entire axis.
constant_values : sequence or scalar, optional
    Used in 'constant'.  The values to set the padded values for each
    axis.

    ``((before_1, after_1), ... (before_N, after_N))`` unique pad constants
    for each axis.

    ``((before, after),)`` yields same before and after constants for each
    axis.

    ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
    all axes.

    Default is 0.
end_values : sequence or scalar, optional
    Used in 'linear\_ramp'.  The values used for the ending value of the
    linear_ramp and that will form the edge of the padded array.

    ``((before_1, after_1), ... (before_N, after_N))`` unique end values
    for each axis.

    ``((before, after),)`` yields same before and after end values for each
    axis.

    ``(constant,)`` or ``constant`` is a shortcut for ``before = after = constant`` for
    all axes.

    Default is 0.
reflect_type : {'even', 'odd'}, optional
    Used in 'reflect', and 'symmetric'.  The 'even' style is the
    default with an unaltered reflection around the edge value.  For
    the 'odd' style, the extended part of the array is created by
    subtracting the reflected values from two times the edge value.

Returns
-------
pad : ndarray
    Padded array of rank equal to `array` with shape increased
    according to `pad_width`.

Notes
-----
.. versionadded:: 1.7.0

For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes.  This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.

The padding function, if used, should modify a rank 1 array in-place. It
has the following signature::

    padding\_func(vector, iaxis_pad_width, iaxis, kwargs)

where

    vector : ndarray
        A rank 1 array already padded with zeros.  Padded values are
        vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].
    iaxis_pad_width : tuple
        A 2-tuple of ints, iaxis_pad_width[0] represents the number of
        values padded at the beginning of vector where
        iaxis_pad_width[1] represents the number of values padded at
        the end of vector.
    iaxis : int
        The axis currently being calculated.
    kwargs : dict
        Any keyword arguments the function requires.

Examples
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])

>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])

>>> np.pad(a, (2, 3), 'linear\_ramp', end_values=(5, -4))
array([ 5,  3,  1,  2,  3,  4,  5,  2, -1, -4])

>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [3, 3, 3, 4, 3, 3, 3],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1]])

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1,  0,  1,  2,  3,  4,  5,  6,  7,  8])

>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def pad\_with(vector, pad_width, iaxis, kwargs):
...     pad_value = kwargs.get('padder', 10)
...     vector[:pad_width[0]] = pad_value
...     vector[-pad_width[1]:] = pad_value
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
       [10, 10, 10, 10, 10, 10, 10],
       [10, 10,  0,  1,  2, 10, 10],
       [10, 10,  3,  4,  5, 10, 10],
       [10, 10, 10, 10, 10, 10, 10],
       [10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
       [100, 100, 100, 100, 100, 100, 100],
       [100, 100,   0,   1,   2, 100, 100],
       [100, 100,   3,   4,   5, 100, 100],
       [100, 100, 100, 100, 100, 100, 100],
       [100, 100, 100, 100, 100, 100, 100]])

None
(1, 5, 4)
[[0.275 0.437 0.958 0.833 0.339]
[0.174 0.376 0. 0.253 0.81 ]
[0.01 0.608 0.613 0.102 0.386]
[0.032 0.907 1. 0.056 0.907]
[0.586 0.756 0.64 0.591 0.015]]
[19 14 0 13 12 10 3 6]
[ 3 15 10 15 3 9 16 11]
[ 3 10]




---


### 11-得到昨天、今天、明天的



yes = np.datetime64(‘today’, ‘D’) - np.timedelta64(1, ‘D’)
tod = np.datetime64(‘today’, ‘D’)
tom = np.datetime64(‘today’, ‘D’) + np.timedelta64(1, ‘D’)
print(f"昨天是{yes}“)
print(f"今天是{tod}”)
print(f"明天是{tom}")


### 12-得到一个月中所有的天



tt = np.arange(‘2022-08’, ‘2022-09’, dtype=‘datetime64[D]’)
print(tt)


### 13-得到一个数的整数部分



xs = np.random.uniform(0, 20, 8)
print(xs)

print(np.floor(xs))


### 14-构造一个数组,让它不能被改变–只读



zz = np.zeros(5)

zz.flags.writeable = False

zz[0] = 2

print(zz[0])


### 15-打印大数据的部分值



np.set_printoptions(threshold=5)
bq = np.zeros((20, 20))
print(bq)


#### 相关程序运行如下:



昨天是2022-08-29
今天是2022-08-30

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

np.random.uniform(0, 20, 8)
print(xs)

print(np.floor(xs))


### 14-构造一个数组,让它不能被改变–只读



zz = np.zeros(5)

zz.flags.writeable = False

zz[0] = 2

print(zz[0])


### 15-打印大数据的部分值



np.set_printoptions(threshold=5)
bq = np.zeros((20, 20))
print(bq)


#### 相关程序运行如下:



昨天是2022-08-29
今天是2022-08-30

[外链图片转存中…(img-bStY3tc8-1715285310396)]
[外链图片转存中…(img-TP64H0aF-1715285310397)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值