Python数据分析项目案例 电影Top100榜单分析(附源数据代码)_猫眼电影top100的数据分析(1)

本文通过爬取猫眼电影数据,对Top100电影的地区、年份和风格进行分析,发现美国电影数量最多,90年代经典影片居多,同时揭示了电影风格与受欢迎程度的关系。作者还分享了如何系统化学习IT资源的方法和推荐了一个技术交流学习社群。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大纲

内容简介:

对猫眼电影网站的Top100榜单进行数据分析,寻找好电影中隐藏的规律和价值。

源数据:

一份从猫眼电影网站爬取的csv文件。

字段:电影名,主演,上映时间及地区,平均,时长。

记录:100个按评价排序的好电影

部分截图:
在这里插入图片描述
相关工具:

excel、python

分析内容:

分析1: Top100电影地区分布

分析2: Top100电影上映年份分布

分析3: Top100电影风格分布

分析4:铸就经典!谁是好电影保障?

正文

01导入库、整体风格设置=
在这里插入图片描述
说明:

  1. 导入numpy、和pandas用作数据分析基本库。
  2. 导入matplotlib和seaborn用作可视化。
  3. 最后三行,使中文内容能够友好的展示出来。

02导入数据

  1. pd.read_csv导入数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值