在 Windows 中搭建 Stable Diffusion,目前最简单的安装方式,自己的专属 AI

前言

现在网络上有许多免费的 Stable Diffusion AI 图片生成工具,例如Fast Stable Diffusion XL、Stable Diffusion Online 和 Tensor Art等。这些工具都是基于免费模型,许多人可能想尝试直接在电脑上运行。

过去的安装步骤需要 Python,对于普通用户来说可能有些困难。今天小妹分享一个更简单的方法:“ComfyUI”,它可以让你轻松地在本地运行 StableDiffusion AI 绘图 。

ComfyUI 不仅支持 Windows,还有 Mac 版本。有兴趣的用户可以访问 GitHub 了解如何安装,本教程主要针对 Windows 用户。


第一时间白嫖各种软件,一定这样做


如何在Windows 中安装 Stable Diffusion,目前最简单的运行方式

想在 Windows 中运行 Stable Diffusion,只需要4 个步骤,不用任何技术背景:

  1. 下载 ComfyUI

  2. 下载指定 Stable Diffusion

  3. 把下载的文件放进 ComfyUI 资料夹内

  4. 开始 AI 绘图

注意事项

在进行绘图时,需要注意 Prompt 只能输入英文,不支持中文输入。

通过今天分享的 ComfyUI,用户还可以安装 ComfyUI Manager 管理工具,从而获得更多 Node,实现更高品质和更多控制性的 AI
绘图,有兴趣的用户可以自行研究。

1. 下载 ComfyUI

访问 ComfyUI 的项目地址,往下滑找到“Installing”,点击“Direct link to download”就会开始下载,文件约
1.34GB,格式是 7z(可以通过 Winrar 或 7zip 进行解压,最新版 Windows 11 无需第三方软件即可解压)。

所有的下载链,请在文章末尾获取。

下载好后解压缩,解压缩后的文件是 4.81 GB,相当大,再加上模型,建议至少保留 50GB 的储存空间。

解压缩后会看到有两个批处理文件“run_cpu.bat”和“run_nvidia_gpu.bat”,就如同文件名称,如果你有 NVIDIA 显卡且 VRAM
超过 8GB,那就使用 run_vidia_gpu,比起 CPU 绘图速度会快很多。

鼠标双击 “run_cpu.bat”,会跳出一个命令提示窗口,等待几秒,接着就会看到浏览器打开 ComfyUI
的操作界面,看起来好像很难,但实际上非常简单,后面会有详细介绍。

目前一开始没有任何模型,所以最左边 Load Checkpoint 没有任何东西可选。

所以接下来就是下载并添加模型数据。

2. 下载指定 Stable Diffusion 模型

总共有 3 个模型文件需要下载:

  • Stable Diffusion XL Base 1.0

  • Stable Diffusion XL Refiner 1.0

  • SDXL-VAE

首先下载 Base 1.0,访问下载的页面后往下滑。

下载后面扩展名为"safetensors"的文件,这是 Stable Diffusion XL 的基础模型。

再来是 Stable Diffusion XL Refiner 1.0,一样是下载扩展名为"safetensors"的文件。

最后是 SDXL-VAE,也是下载扩展名为"safetensors"的文件。

目前所有需要的文件已经完成。

3. 把模型文件放进 ComfyUI 文件夹内

下载后有三个模型文件,"sd_xl_base_1.0.safetensors"和"sd_xl_refiner_1.0.safetensors"放在同一个文件夹,“sdxl_vae.safetensors”则是另一个。

"sd_xl_base_1.0.safetensors"和"sd_xl_refiner_1.0.safetensors"就放在“ComfyUI(第一次下载的压缩包解压后)”文件夹下的“ComfyUI_windows_portable\ComfyUI\models\checkpoints”文件夹中,未来如果下载其他别人优化过的模型,也是放在这边。

“vae”则是放在“ComfyUI_windows_portable\ComfyUI\models\vae”文件夹中。完成之后,再次执行
ComfyUI,鼠标双击 “run_cpu.bat”。

4. 开始AI 绘图

回到ComfyUI的界面后,在“Load Checkpoint”选框中,就能选择刚刚放进文件夹的 SDXL 模型。以“Base”为例,简单来说,“Load
Checkpoit”就是选择你要用的模型。

“CLIP Text Encode”部份,上方“Prompt”,就是输入你要的图片描述,下方则是不想出现在图片里的描述。

在上面输入“blue Car”,生成蓝色的车子,下方输入“text”,不要出现文本。

“Empty Latent Image”是图片解析度和一次生成几张的设置,小妹设定成1200×720,一次生成 2 张图片。

“KSampler”是图片更细节的设置,这部份可以全部都保留预设,生成完后再慢慢调整,看每一个设定的差异。

以上都设置好后,按右边的“Queue Prompt”就会开始执行。画面中出现绿色框框的地方,就是目前运行到的位置。

完成后,产生出的 AI 图片会显示在最右边“Save Image” 中。

如果满意的话,在图片上点击鼠标右键,选择“Save Image”就能下载到电脑里。

5. 下载更多优化模型

想要玩玩看其他人优化过的模型,可以到 CIVITAI 这个网站,有超多Stable Diffusion 模型可免费下载。

下载方式也很简单,需注册会员,然后打开喜欢的模型页面,右侧就能看到下载图示。

另外“CIVITAI”也有提供线上测试功能,建议可以先试试看是不是你想像中那样,要不然每一个模型文件都非常大,会花很多下载时间,也占用电脑空间。

下载的模型一样放在“ComfyUI_windows_portable\ComfyUI\models\checkpoints”文件夹中,再次打开“ComfyUI”就能使用。

而且不仅有静态模型,还有动态模型,如果你的电脑配置足够强大,尤其是显卡,这些模型足可以玩出各种花样。Stable
Diffusion安装包和实操教程已经打包好了,有需要的小伙伴文末扫码获取~

但由于AIGC刚刚爆火,网上相关内容的文章博客五花八门、良莠不齐。要么杂乱、零散、碎片化,看着看着就衔接不上了,要么内容质量太浅,学不到干货。

这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。

有需要的朋友,可以长按下方二维码,免费领取!

请添加图片描述

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
在这里插入图片描述

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

请添加图片描述#### 精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

在这里插入图片描述

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

在这里插入图片描述

有需要的朋友,可以长按下方二维码,免费领取!

请添加图片描述

<think>嗯,用户想在Windows安装Stable Diffusion,我得根据提供的引用资料来整理步骤。首先,需要确认系统要求和硬件配置,引用4提到了推荐配置,比如Win10以上,RTX 2060显卡,6GB显存以上,内存最好16GB。用户可能需要先检查自己的电脑是否符合这些条件,特别是显存部分,不够的话可能运行不起来。 接下来,安装依赖环境。引用1和2都提到了安装CUDA、显卡驱动、Conda和Git工具。CUDA和显卡驱动是必须的,因为Stable Diffusion依赖GPU加速。安装Conda可以方便管理Python环境,Git用来克隆仓库。用户需要按照步骤安装这些依赖,比如先安装CUDA,然后确保显卡驱动是最新的,接着安装Conda和Git。引用2还提到安装pytorch之前要装好CUDA,所以顺序不能乱。 然后是配置Transformer环境变量,引用1提到这个步骤,但具体怎么配置可能需要进一步说明。比如设置环境变量指向CUDA的路径,或者在Conda环境中安装特定版本的PyTorch。用户可能需要修改配置文件,比如webui-user.bat,引用3提到用编辑器打开这个文件,可能涉及修改参数或路径。 安装SD WebUI部分,引用1和3都提到了克隆仓库,运行webui-user.bat。这里需要确保Git正确克隆了仓库,并且启动脚本能自动安装依赖。用户可能会遇到网络问题,比如下载模型慢或者依赖包安装失败,这时候可能需要换源或者手动下载。引用2提到安装过程中可能会自动安装PyTorch,但需要正确版本,所以用户可能需要手动调整配置,确保PyTorch和CUDA版本匹配。 安装后的问题处理,比如网络错误或者依赖缺失,引用1提到在安装过程中可能遇到的问题,用户需要根据错误信息搜索解决方法,或者使用国内镜像加速下载。引用3提到升级的方法,用户可能需要定期更新仓库,保持版本最新。 最后验证安装是否成功,启动WebUI后访问本地端口。如果页面能打开,说明安装成功。用户可能需要生成测试图片确认功能正常。 相关问题部分,用户可能会对硬件需求、环境配置、启动失败处理、优化方法等有疑问,需要根据引用资料中的信息生成相关问题,帮助用户深入理解。</think>### 在Windows系统中安装和配置Stable Diffusion的步骤 #### 1. **检查硬件和系统要求** - **操作系统**: Windows 10及以上版本[^4] - **显卡**: 推荐NVIDIA显卡(如RTX 2060 6GB显存或更高,显存不足可能导致运行失败)[^4] - **内存**: 8GB以上(推荐16GB)[^4] - **硬盘空间**: 至少20GB可用空间(模型文件较大) #### 2. **安装依赖环境** - **步骤1: 安装CUDA工具包** 从NVIDIA官网下载与显卡驱动匹配的CUDA版本(推荐CUDA 11.8)[^1]。 - **步骤2: 更新显卡驱动** 通过NVIDIA GeForce Experience或官网手动更新驱动。 - **步骤3: 安装Conda** 下载Miniconda或Anaconda并配置环境变量。 - **步骤4: 安装Git工具** 下载Git for Windows并完成安装。 #### 3. **配置PyTorch和Transformer环境** - 创建Conda环境并安装PyTorch(需与CUDA版本匹配): ```bash conda create -n sd_env python=3.10 conda activate sd_env pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` - 设置环境变量(如`TRANSFORMERS_CACHE`指向模型缓存路径)[^2]。 #### 4. **安装Stable Diffusion WebUI** - 克隆仓库并启动安装脚本: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui cd stable-diffusion-webui webui-user.bat ``` - **自动安装依赖**: 脚本会下载所需模型和插件(需稳定网络,失败可重试)[^3]。 #### 5. **解决常见安装问题** - **网络超时**: 使用国内镜像源(如修改`launch.py`中的仓库地址)[^3]。 - **显存不足**: 降低生成图片分辨率或升级显卡[^4]。 - **启动失败**: 检查CUDA和PyTorch版本是否匹配。 #### 6. **验证安装** 启动成功后,访问`http://localhost:7860`即可使用Web界面生成图像[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值