前言
在这个充满创意和可能性的数字世界里,每一次点击和滑动都应该是一次享受。但如何才能将这种享受转化为现实呢?ComfyUI,一个专为极致用户体验而生的设计工具,将带你开启一段从0到1的奇妙旅程。无论你是设计新手还是资深开发者,ComfyUI都将是你的得力助手,帮助你将创意转化为触手可及的现实。你准备好了吗?让我们一起探索如何打造一个既吸引人又易于使用的界面。
概述
这里ComfyUI的安装我们不采用一键安装包的安装方式,而是手把手的和大家分享如何从零开始一步步的搭建,让大家可以更深入的了解ComfyUI的安装原理,也利于后续安装各种插件出错时可以自行排查问题。
所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~
[CSDN大礼包:《Comfyui学习资源包》免费分享
一、网络环境
由于ComfyUI需要的大量插件、模型文件多是存放在国外仓库为主,为了贴合小伙伴无法访问的情况 ,这里尽量以国内环境为主,在安装或下载的过程尽量借助下载工具来解决网络问题。至于如何合理的上网,请小伙伴自行百度。
二、支持环境
1. 硬件配置
-
CPU:I5-12600KF及以上;
-
内存:32G+(加载模型需要);
-
硬盘:2T+(存放模型文件需要);
-
显卡(GPU):8G+;推荐英伟达(NVIDIA)30系列、8G显存及以上的显卡(更低配置的显卡也可以运行,不过速度很慢且有很多模型都无法跑起来)。如果在低型号高显存和高型号低显存之间进行选择,则建议使用高显存,虽然没有高型号的性能好,但由于显存足够在跑一些基于LLM类的模型时至少还能运行。
备注:如果只是体验下ComfyUI,配置可以不需要这么高,但如果是想用于提高生产力的,则配置越高越好,例如我只是安装了一些主流的模型和插件,硬盘空间占用就超过1T。
2. 操作系统
推荐使用64位的Windows 10及以上操作系统版本。本视频录制时使用Windows11,对于安装过程需要设置系统参数的地方,请不使用Windows 11的小伙伴自行百度。
3. cuda+cuDNN
cuda(ComputeUnified Device Architecture)和cuDNN是英伟达推出的通用并行计算架构和用于深度神经网络的GPU加速库。ComfyUI底层的深度学习框架PyTorch就是利用显卡(GPU)结合使用这两个库在文生图、图生图、视频重绘时可以高效工作,而不是使用CPU。
4. GIT
GIT是一个开源的分布式版本控制系统,在使用ComfyUI的过程中,使用GIT软件来实现插件安装与更新、ComfyUI本身以及依赖环境的更新。
5. Anaconda
Anaconda使用Conda包管理器来管理软件包的安装和环境管理。Conda可以轻松地创建、管理和切换不同的Python环境,使得项目之间的依赖关系和版本控制更加简单。例如WebUI使用的python版本是3.10.6,而ComfyUI则是3.11,通过使用Anaconda可以同时创建多个虚拟运行环境,满足不同场景要求。
三、安装软件
6. 安装cuda+cuDNN
安装前需要确认显卡(GPU)支持的最大版本,可能通过在任务栏找到NVIDIA控制并打开:
在控制面板的左下角找到【系统信息】:
然后在【组件】页签中找到NVCUDA64.DLL,就可以看到CUDA最高的版本不能超过12.4:
或者通过CMD命令行来查看,在系统任务栏的搜索输入CMD,找到该命令并运行:
在命令行中输入 nvidia-sm,在输出的结果就可以看到显卡(GPU)支持的CUDA最高版本,这里为12.4:
因为很多插件并未支持最新版本的CUDA,不建议安装最新的版本,目前主流的版本为12.1。最好是结合ComfyUI以及依赖的PyTorch版本来进行安装。接下来会进行讲解。
- 确认PyTorch对应的CUDA版本
在安装cuda前,可以先确认下pytorch深度学习框架对cuda版本的支持情况,在浏览器输输入网址 https://pytorch.org/ ,在页面向下滚动找到查看支持的cuda版本:
从这里可以看到PyTorch支持的CUDA版本主要有11.8、12.1、12.4,前面我们提到最好不要下载最新版本的CUDA,结合这里的信息,我们选择CUDA的版本为12.1,这也是目前ComfyUI使用的版本。
7. 安装cuda
在浏览器输入网址:https://developer.nvidia.com/cuda-toolkit-archive 找到12.1版本:
按提示选择操作系统、架构和版本下载:
下载完成后双击软件运行并按提示安装,点击OK进行解压缩:
这里选择【自定义】:
由于我们没有使用Visual Studio和不需要更新显示驱动,因此不需要勾选"Visual Studio Integration"和"Display Driver":
点击下一步进行安装,安装完成后在命令行窗口(CMD)运行nvcc -V,如果输出下面内容则表示安装成功:
8. 安装cuDNN
在浏览器输入网址:https://developer.nvidia.com/rdp/cudnn-archive ,找到与前面安装的CUDA对应版本(12.1),这里选择12.x的最新版本:
选择对应Windows系统的版本(cuDNN需要注册方可下载):
下载完成后进行解压缩:
将bin、include、lib三个文件复制到已安装的CUDA目录下进行替换,提示“您需要提供管理员权限才能复制到此文件夹”,点击【继续】即可:
使用命令行窗口进入“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite"(具体路径以安装的目录为主),然后输入【bandwidthTest.exe】,如果结果输出“PASS”则表示安装成功:
9. 安装GIT
在浏览器输入网址:https://git-scm.com/,在页面右侧点击【Download for Windows】:
选择“64-bit Git for Windows Setup”进行下载(建议复制下载链接使用迅雷下载):
双击刚下载GIT文件进行安装,安装过程中会有很多选项进行选择,这里只需使用软件提供默认项目即可,一路点击【Next】:
点击【Install】进行安装:
为GIT设置代理:
#添加全局代理
git config --global http.proxy ‘http://127.0.0.1:7890’
git config --global https.proxy ‘http://127.0.0.1:7890’
#临时设置代理
git -c http.proxy=‘http://127.0.0.1:7890’ clone https://github.com/xxx/xx.git
#查看代理设置
git config --global --get http.proxy
git config --global --get https.proxy
#删除代理设置
git config --global --unset http.proxy
git config --global --unset https.proxy
#清除代理缓存
git config --global --unset-all http.proxy
git config --global --unset-all https.proxy
10. 安装Anaconda(可选)
安装Anaconda并不是必须的,也可以单独下载Python进行安装,新版的Python也支持venv的虚拟环境功能。这里仍然建议安装Anaconda(也可以选择安装简化版本的miniconda安装),对于小伙伴们后续深入使用和了解基于Python语言的AI应用时,可以同时支持多种不同的python版本和依赖库并灵活切换。
在后面章节分享模型下载的时候,我们需要conda环境来配置C站镜像。
在浏览器输入网址:https://www.anaconda.com/download,在页面右侧选择“Skip registration”跳过注册环节来下载:
点击【Download】进行下载(建议使用下载工具下载):
双击运行刚下载的Anaconda安装包,点击【Next】以及【I Agree】:
选择安装类型,这里选择“All Users (requires admin) privileges”:
选择安装路径(默认即可),点击【Next】:
建议勾选"Register Anaconda3 as the system Python 3.12",这里相当于创建一个名为“base”的虚拟环境,其中的python版本为3.12;建议勾选“Clear the package cache upon completion”,在安装完成时释放硬盘空间。点击【Install】进行安装:
安装完成后,可以使用下面命令来创建虚拟环境 :
conda create --prefix=环境保存路径\环境名称 python=PYTHON版本 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
#例如,创建一个名为comfyui的虚拟环境,安装时使用清华源下载相关组件库,在命令行中输入并执行:
conda create -n comfyui python=3.10 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
#虚拟环境成功后,需要激活才可以使用:
conda activate comfyui
11. 安装ComfyUI
输入网址:https://github.com/comfyanonymous/ComfyUI,向下滚动页面找到“Direct link to download"(https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)”,点击进行下载:
由于GITHUB网站经常间歇性无法访问,可以隔一段时间刷新页面,多试几次还是可以打开的,建议复制下载地址直接使用迅雷等下载工具下载,一是下载速度快,二是不用担心网络问题。
将上面下载的ComfyUI进行解压缩,建议是解压到磁盘根目录下(这里以解压到D盘为例),不要有空格、更不要放在C盘(因放在C 盘后面安装插件及相关依赖组件会因权限不足导致失败)。解压后的文件目录如下:
我们可以展开“python_embeded\Lib\site-packages“文件夹,可以看到ComfyUI默认使用的cuda版本为12.1(对应cu121)以及PyTorch版本为2.3.1:
在运行ComfyUI之前,我们可以配置python从国内源下载,这样可以避免ComfyUI安装或运行时下载依赖组件时出现的网络问题:
D:\ComfyUI_windows_portable\python_embeded>python.exe -m pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
其它的国内源还有:
豆瓣:http://pypi.douban.com/simple/
阿里云:http://mirrors.aliyun.com/pypi/simple/
中国科技大学:https://pypi.mirrors.ustc.edu.cn/simple/
中国科学技术大学:http://pypi.mirrors.ustc.edu.cn/simple/
在解压的ComfyUI目录中,还有一个python_embeded文件夹,该文件夹就是ComfyUI内嵌的python环境,后续我们安装或更新各组件时,都需要在该环境下执行相应的命令。
在ComfyUI内嵌的python环境执行更新pip版本的命令:
D:\ComfyUI_windows_portable\python_embeded>python.exe -m pip install --upgrade pip
双击【run_nvidia_gpu.bat】运行ComfyUI,首次运行因为初始化以及安装相关依赖组件包,因此可能会比较慢,请耐心等待。当输出如下红线框出的内容时则表示安装和运行成功:
【run_cpu.bat】对应的是没有显卡的电脑,使用CPU进行运行,真心不推荐使用CPU版本,会慢的让你怀疑人生。
如果首次运行安装提示失败,则往往是因为网络问题,请关闭当前命令行窗口并再次打开,多试几次基本是可以解决的。
加载成功会自动打开系统配置的默认浏览器进行显示,如果无法自动打开浏览器则请手动打开浏览器并输入提示的地址和端口(http://127.0.0.1:8188)。
12. 运行示例
首次运行ComfyUI均会打开一个默认流程,该流程使用默认SD1.5版本的模型:
这时如果点击【Queue Prompt】铵钮运行流程,则会弹出提示窗口说模型文件不存在:
这时我们还需要下载该流程要求的模型文件(https://hf-mirror.com/LarryAIDraw/v1-5-pruned-emaonly/resolve/main/v1-5-pruned-emaonly.ckpt?download=true)并存放到“ComfyUI\models\checkpoints”目录下,先点击【Refresh】按钮刷新工作流以找到放置在“ComfyUI\models\checkpoints”目录下的模型文件,再点击【Queue Prompt】铵钮运行工作流,如果生成一张图片,则说明ComfyUI安装成功:
四、升级ComfyUI
13. 升级ComfyUI软件本身
因为Stable Diffusion以及ComfyUI一直保持快速的更新迭代,为了体验到最新的功能,我们需要升级ComfyUI。
直接双击运行“update_comfyui.bat”文件即可:
这时会自行打开命令行窗口执行更新,如果更新失败会打印提示信息,这里往往是因为网络问题导致下载更新文件失败导致,关闭窗口再次重新运行“update_comfyui.bat”,多试几次就可以了。升级完成后重启即可。
我们也可以通过后面介绍插件时提到的管理器来进行升级。
14. 升级ComfyUI及相关依赖环境
不推荐使用该升级模式(官方也不推荐),除非你知道自己做什么!!!这是因为该模式除了会升级ComfyUI软件还会更新其依赖的PyTorch到最新版本,太新的PyTorch版本有可能会导致之前安装好的插件无法正常运行。
直接双击运行“update_comfyui_and_python_dependencies.bat”文件即可,这里可能会需要较长时间,主要还是看小伙伴的网络环境。升级完成后重启即可。
本节内容就分享到这里,感谢大家的收看!
为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
[CSDN大礼包:《Comfyui学习资源包》免费分享
一、ComfyUI配置指南
- 报错指南
- 环境配置
- 脚本更新
- 后记
- …
二、ComfyUI基础入门
- 软件安装篇
- 插件安装篇
- …
三、 ComfyUI工作流节点/底层逻辑详解
- ComfyUI 基础概念理解
- Stable diffusion 工作原理
- 工作流底层逻辑
- 必备插件补全
- …
四、ComfyUI节点技巧进阶/多模型串联
- 节点进阶详解
- 提词技巧精通
- 多模型节点串联
- …
五、ComfyUI遮罩修改重绘/Inpenting模块详解
- 图像分辨率
- 姿势
- …
六、ComfyUI超实用SDXL工作流手把手搭建
- Refined模型
- SDXL风格化提示词
- SDXL工作流搭建
- …
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
[CSDN大礼包:《Comfyui学习资源包》免费分享