时间序列与投资模型

  • 一、时间序列的基本概念
    • 1、时间序列:有时间性的序列,数据以一个时间列作为索引
    • 2、时间序列的建模主要包括参数学习和预测两个方面
      • 时间序列的预测也分为长期预测与短期预测,通常预测周期和预测精度是一对冲突概念
      • 参数的学习则是通过模型参数分析这个序列的特征,从而基于“领域知识”分析序列特点进行挖掘。
    • 3、平稳性时间序列:均值、方差和协方差不会随着时间变化。
      • 序列的趋势线是一条水平线;
      • 序列不会某一段波动很大某一段波动很小;
      • 序列不会某一段分布密集某一段分布稀疏。
    • 4、分解模型分为加法模型和乘法模型。加法指的是时间序分的组成是相互独立的,四个成分都有相同的量纲。乘法模型输出部分和趋势项有相同的量纲,季节项和循环项是比例数,不规则变动项为独立随机变量序列,服从正态分布。基本分解形如

      将加法和乘法的分解模式进行分解:

      df=pd.read_csv("Bitcoin.csv")

      y=df.Bitcoin

      df.Date=pd.to_datetime(df.Date)

      df=df.set_index(df['Date'],drop=True)

      plt.figure(figsize=(12, 4))

      plt.plot(df.Bitcoin, label='Bitcoin')

      plt.title('Bitcoin Time Series')

      plt.xlabel('Date')

      plt.ylabel('Bitcoin')

      plt.legend()

      plt.show()

      绘制结果如下:

  • 二、移动平均法与指数平滑法
    • 1、移动平均法是用一组最近的实际数据值来预测未来时间序列的一种常用方法。
    • 2、移动平均法适用于短期预测。当序列需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。
    • 3、移动平均法根据预测时使用的各元素的权重不同,可以分为:简单移动平均和加权移动平均。
    • 4、移动平均法基本思想:根据时间序列资料、逐项推移,依次计算包含一定项数的序列平均值,以反映长期趋势的方法。
    • 5、当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。
    • 6、若预测目标的基本在某一个水平上下浮动,趋势线是一条水平线而非斜线更非曲线时,可以用一次移动平均方法建立预测模型。一次移动平均方法的递推公式:
      • 如果预测目标类似于一个线性模型(也就是趋势线是一条一次函数)会使用二次移动平均。二次移动平均方法的递推公式形如:
      • 预测标准误差为:
      • 如果预测目标的基本趋势呈周期加线性,可以趋势移动平均法。形如:

    • 7、时间序列中如果出现明显的直线型或曲线型趋势,需要先把这个趋势成分分离出来以后才方便分析。
    • 8、指数平滑法基本思想:将权重按照指数级进行衰减
    • 9、指数平滑法有几种不同形式:一次指数平滑法针对没有趋势和季节性的序列,二次指数平滑法针对有趋势但没有季节性的序列,三次指数平滑法针对有趋势也有季节性的序列。
    • 10、一次指数平滑的递推公式为:
      • 化简得:
      • α表示修正幅度大小。通过对修正幅度的调节可以实现一次指数平滑。

      • 平滑到三阶指数平滑,定义三个累计序列:

    • 11、时间序列中如果应用移动平均,预测序列的数据量会少一个窗口长度;而应用指数平滑法的时候,趋势线的长度和原始序列的长度是对齐的
  • 三、ARIMA系列模型
    • 1、AR模型模型,全称为自回归模型自回归模型(Autoregressive model),是统计上一种处理时间序列的方法,用同一变数例如x的之前各期,亦即x1至xt-1来预测本期xt的表现,并假设它们为一线性关系。该模型描述了当前值与历史值之间的相关关系,用变量自身的历史数据对当前数据进行预测。在实际运用中,AR模型必须满足弱平稳性的要求,且必须具有自相关性,自相关系数小于0.5则不适用。
    • 2、对于p阶自回归模型(AR),其递推公式形如:
    • 3、MA模型模型,全称移动平均模型移动平均模型(moving average model),是一种用于分析时间序列数据的统计模型。该模型的主要特点是当前的输出(或时间序列值)被视为过去白噪声误差的加权和。
    • 4、在MA模型中,通常包括一个常数项,用于表示时间序列的平均水平。这个模型假设时间序列的数据是平稳的,即它们的均值和方差保持不变,并且每个时间点的数据都是独立的。
    • 5、MA模型的一个重要特征是它的自协方差函数自协方差函数和自相关系数自相关系数表现出特定的模式。自协方差函数在某个滞后阶数后趋于零,表现出q阶截尾的特性,而自相关系数则表现出q阶截尾的特性。这与自回归(AR)模型形成对比,后者的自相关系数表现出拖尾的特性。
    • 6、在实际应用中,MA模型常与其他模型结合使用,如自回归滑动平均(ARMA)模型和自回归移动平均(ARIMA)模型,以适应更复杂的时间序列分析需求。
    • 7、对于q阶移动平均模型(MA),其递推公式形如:
    • 8、ARIMA模型是统计模型中最常见的一种用来进行时间序列预测的模型,只需要考虑内生变量而无需考虑其他外生变量,但要求序列是平稳序列或者差分后是平稳序列。ARIMA模型包含3个部分,即自回归(AR)、差分(I)和移动平均(MA)三个部分。
  • 四、灰色系统模型
    • 1、灰色系统是指系统数据有一些是未知,有一些是已知。
    • 2、灰色预测就是对含有已知和未知信息的系统进行预测,寻找数据变动规律,再建立相应的微分方程模型,来对事物发展进行预测
  • 五、马尔可夫模型
    • 1、一个马尔科夫链是离散时间的随机过程,系统的下一个状态仅仅依赖当前的所处状态,与在它之前发生的事情无关。写成表达式就是:
    • 2、马氏定理是指对于一个非周期马尔科夫链有状态转移矩阵P,有:
    • 3、隐马尔可夫模型(Hidden Markov Model, HMM)是一个强大的工具,用于模拟具有隐藏状态的时间序列数据。HMM广泛应用于多个领域,如语音识别、自然语言处理和生物信息学等。在处理HMM时,要集中于三个经典问题:评估问题、解码问题和学习问题。
      • 评估问题是指确定一个给定的观测序列在特定HMM参数下的概率。简而言之,就是评估一个模型生成某个观测序列的可能性有多大。
      • 解码问题是指给定一个观测序列和模型参数,找出最有可能产生这些观测的隐状态序列。这个问题的核心是如何从已知的观测数据中推断出隐含的状态序列
      • 理解学习问题关键在于确定模型参数,以最大化给定观测序列的出现概率。解决这一学习问题的常用方法是鲍姆-韦尔奇算法,这是一种迭代算法,通过交替执行期望步骤(E步骤)和最大化步骤(M步骤)来找到最大化观测序列概率的参数。E步骤计算隐状态的期望值,而M步骤则更新模型参数以最大化观测序列的概率
    • 4、条件随机场(Conditional Random Field)是 马尔可夫随机场 + 隐状态的特例。区别于生成式的隐马尔可夫模型,CRF是判别式的。CRF 试图对多个随机变量(代表状态序列)在给定观测序列的值之后的条件概率进行建模,通常借助 sklearn_crfsuite 库实现
  • 注:文章内容来源于开源学习平台Datawhale的学习笔记
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值