离散数学 代数系统

1,一些运算的性质

2,二元代数运算:

练习题:

思考题:

3,一些代数系统中特殊的元素

练习题


1,一些运算的性质

封闭性:运算的结果任然属于本集合

交换性:左右交换不影响结果

结合性:a+b+c=(a+b)+c=a+(b+c)

分配律:两个运算,优先级大的,满足对小的的分配 对顺序有要求

吸收律:两个运算,x*(x^y)=x x^(x*y)=x 都满足才满足

等幂律:任意元素a,都有a*a=a。

可消去律(去掉0) a*x=a*Y --> x=Y (a!=0)     

如:乘法:去掉0,其他元素满足消去,律 并集不满足

2,二元代数运算:

S是一个非空的集合,f:S*S->S是一个二元代数运算,表示S中的任意元素

显然满足封闭性

a,b可以通过f确定唯一一个元素c在S中。

Eg: 自然数集合的加法是二元代数运算

但是自然数集合上的减法不是:比如1-2 =-1

练习题:

例1.对于自然数集合N:加法、乘法是二元代数运算,减法和除法不是二元代数运算。因为:①自然数0不可以作除数。②两个自然数相减或相除的结果未必是自然数。

例2.对于整数集合Z:加法、乘法、减法是二元代数运算,除法不是二元代数运算。因为:①整数0不可以作除数。②两个整数相除的结果未必是整数。

例3.对于有理数集Q、实数集R、复数集C:

加法是这些集合二元代数运算,乘法是这些集合二元代数运算,减法是这些集合二元代数运算,

除法不是这些集合上的二元代数运算。因为0不做除数

例4.对于非零实数集R*,

加法不是R*上的二元代数运算,

减法不是R*上的二元代数运算,因为两个非零实数相加或相减可能得0.

乘法是R*上的二元代数运算,

除法是R*上的二元代数运算。

练习.以下哪些是A={x|x=2,neZ}上的二元代数运算?(C)

A加法 B减法 C乘法 D除法

例6.实数矩阵的加法和乘法是实矩阵集合上的二元代数运算。

例7.设S是一个非空集合,P(S)是S的幂集,则集合的交运算口、并运算U是p(S)上的二元代数运算。

例8.逻辑联结词V、^、→、↔>都是集合{0,1}上的二元代数运算。

对应的n元代数运算;

例10

(1)对于整数集Z以及其上关于整数的加法、乘法、减法运算来说:①加法、乘法都满足结合律和交换律;②)乘法对加法满足分配律,但加法对乘法不满足分配律;③减法不满足结合律,也不满足交换律;④加法、乘法、减法都不满足等幂律,其中任意两种运算都不满足吸收律。(2)对于n阶实方阵集合以及其上关于矩阵的加法、乘法运算来说:①加法满足结合律和交换律;乘法满足结合律,但不满足交换律;②)乘法对加法满足分配律,但加法对乘法不满足分配律;③加法、乘法都不满足等幂律;④加法和乘法不满足吸收律。

(3)设S是一个非空集合,p(S)是S的幂集,则对p(S)以及其上关于集合的交运算∩、并运算U来说:①∩、U都满足结合律、交换律:②)U对∩、∩对U都满足分配律;③∩、U都满足等幂律、吸收律。

消去律还分为左消去律和右消去律。

例11.(1)整数集合Z上的加法满足消去律,乘法不满足消去律。比如:8*0=5*0

     (2)对于n(>=2)阶方阵,加法满足消去律,乘法不满足

(但是对于n阶的非奇异方阵,乘法满足消去律)

对于一个幂集p(s),其上的交并运算不满足消去律,但是对于异或来说,是满足的

思考题:

思考:

  1. 求平方根是否为实数集合上的一元运算?x
  2. 求平方根是否为复数集合上的一元运算?x
  3. 求算术平方根是否为正实数集合上的一元运算?√
  1. 负数没有平方根,正数的平方根有两个不唯一
  2. 正数和负数的平方根都有两个不唯一

思考:

已知有理数集合0的一个子集G,在G上有理数乘法运算的消去律成立,请问:

(1)这样的子集G最小是一个什么样的集合?G为{0}或者{1}

(2)这样的子集G最大是一个什么样的集合?G为Q-{0}

代数系统(一个集合和若干个代数运算组成)

3,一些代数系统中特殊的元素

幂等元:x对自己的任意多的运算等于自身

单位元:e 和任意数都不改变其的值(左1和右1不一定同时存在,存在则相等)

比如

存在右单位元        

,但是没有左单位元,但是存在一定相等el*er=el=er

零元: 0 乘任何数都是0(左右不一定同时有,但同时存在左右,一定相等)

逆元:一个元素和他的逆元相乘为单位元(可结合的系统,左右逆元唯一且相等,但其他的不一定相等)

一个结论:如果一个元数>1的系统中,存在e和0 那么e!=0

练习题

例题:S={a,b,c, d},考虑集合族p(S)上的集合交、并运算:

  1. p(S)中关于交运算的单位元是S,S关于交运算的逆元是S:P(S)中其它集合关于交运算的逆元不存在。

(2)p(S)中关于并运算的单位元是Ø,Ø关于并运算的逆元是Ø:P(S)中其它集合关于并运算的逆元不存在。

例题:

(1)对于整数集合Z以及其上关于整数的加法、乘法来说:①加法单位元是0,没有加法零元,任何整数a的加法逆元为-a;②乘法单位元是1,乘法零元是0,1的乘法逆元为1,-1的乘法逆元为-1,其余整数无乘法逆元。

(2)对于n阶(n>2)实数矩阵集合M(R)以及其上关于矩阵加法、乘法来说:

①加法单位元是n阶全0矩阵,没有加法零元,任何矩阵M的加法逆元是-M;

②)乘法单位元是n阶单位矩阵,乘法零元是n阶全0矩阵,只有可逆矩阵M有乘法逆元

当我们去检验一个代数系统有没有结合律的时候不用去看零元和单位元

当满足结合律的时候,一个元素的逆元唯一,且互为逆元

假如a的左逆元是b,右逆元是c

b*a=e  -->b*a*c=e*c=c

a*c=e  -->b*a*c=b*e=b

所以b==c

假如存在两个逆元,a*b1=b1*a=e  a*b2=b2*a=e,并且b1!=b2

就有   b1* e !=b2* e

也就是 b1=b1*e = b1* a * b2= b2 和结论矛盾

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值