1,审敛:
基础知识:
两个常见的级数
1,(q在n下)等比级数: ∑ a*q^n
对于这种级数,当q>=1的时候发散,当q<1的时候收敛
2,(p在n上)p级数 ∑ n^(-p)
对于这种级数,当p>1的时候收敛,当p<1的时候发散,当p==1的时候需要我们人为的去讨论
方法:
1,比较审敛法
(通过放缩来实现判断收敛性的判断) (对于正向级数)
eg:
主要思想是先预测下究竟是发散还是收敛,
如果预测是收敛,就找一个比原式大但是收敛的式子
如果预测是发散,就找一个比原式小但是发散的式子
比如上题,当n->∞时,1/n为0,所以求和符号内部一定会趋于0,那么我们就预测时收敛的,就开始找一个更大但是收敛的式子来将不好运算的部分消去,方便我们运算
2,比值法/根值法判断敛散性
(对于正向级数)
假设级数时Un, t=Un/U(n+1) = (Un)^(1/n)
当t>1时,级数发散,当t<1时,级数收敛,当t==1时需要讨论
eg:
3,积分审敛法
(对于正向级数):正向级数的发散和收敛与其的积分形式一致
eg:
\
4,牛顿莱布尼兹判别法
(对于交错级数)(-1)^n*Un
当Un单调递减且当n->∞时,Un=0,则有原级数收敛
eg:
5,绝对收敛和条件收敛
绝对收敛:∑|Un|收敛叫做绝对收敛,如果绝对收敛,原级数也一定收敛
条件收敛:∑|Un|收敛发散,但是∑Un收敛叫做条件收敛
eg:证明绝对收敛,则原级数收敛
2,收敛区间/域/半径
收敛半径 :1/t
收敛区间不包括端点,但是收敛域要去研究端点
eg:
我们让y=x-1,将x=-1带入,发现级数在y=-2处收敛,所以在|y|<=2的区间内都是收敛的,所以当x=2,y=1时,级数绝对收敛
3,级数求和
就是利用等比数列的求和公式和求和符号可以和求导/积分符号换位置来做
1,积分with求和
2,导数with求和
如果是多项式的形式,可以将其拆开来运算
4.幂级数展开
就是利用泰勒公式or求导后积分来帮助我们完成
常用1/(1+x) = ∑(-1)^n * x^n
1/(1-x)= ∑x^n
5,函数项级数的一致收敛性以及其和函数的连续性
判别法:
柯西收敛准则
eg:
M判别法:
只有当级数一致收敛,其和函数才有连续性
6,傅里叶级数
拟合周期函数的
迪利克雷定理
周期延拓和正余弦函数
上面是奇延拓后的余弦级数下面是偶延拓的正弦级数
周期是2l