2024年C C++最全【迎战蓝桥】 算法·每日一题(详解+多解)-- day2_算法一题多解,C C++笔试面试题

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

    int a = 1;
    int b = 1;
    int c =0;
    for (int i = 3; i <= n; i++) {
        c = a + b;
        a = b;
        b = c;
    }
    return c;
}


> 
> 💊方法三:代码如下:
> 
> 
> 



// “减枝”思想,利用Map 将已得到的fib 存储起来
private Map<Integer,Integer>  filter = new LinkedHashMap<>();
public int Fibonacci3(int n) {
    if(n == 0){
        return 0;
    }
    if(n == 1 || n == 2){
        return 1;
    }

    int pre = 0;
    if(filter.containsKey(n-1)){
        // filter 已存在n-1的斐波那契数
        pre = filter.get(n-1);
    }else {
        // 不存在
        pre = Fibonacci3(n - 1);
        // 将该pre 存入filter中
        filter.put(n-1,pre);
    }

    int ppre = 0;
    if( filter.containsKey(n - 2)){
        // filter 已存在n-2的斐波那契数
        ppre = filter.get(n-2);
    }else {
        ppre = Fibonacci3(n-2);
        filter.put(n - 2,ppre);
    }

    return pre + ppre;
}


### 🏀2. 青蛙跳台阶问题



> 
> **描述:**
> 
> 
> 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
> 
> 
> 
> 数据范围:1 ≤ n ≤ 40
> 
> 
> 要求:时间复杂度:O(n)O(n) ,空间复杂度: O(1)O(1)
> 
> 
> 



> 
> ![](https://img-blog.csdnimg.cn/c2b1d6528a0a4dceb7a50d7afba9b6c5.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA54ix5bmy6aWt55qE54y_,size_20,color_FFFFFF,t_70,g_se,x_16)
> 
> 
> 



> 
> **解题思路:**
> 
> 
> 🎈方法一:状态定义:f(i): 跳到i台阶的总跳法 
> 
> 
>               状态递推:f(i) = f(i-1)+f(i-2)
> 
> 
>               初始状态:  f(0) = 1
> 
> 
> (0台阶,就是起点,到达0台阶的方法有一种,就是不跳[这里可能有点奇怪,但是想想,如果方 法次数为0,就说明不可能开始...]), f(1) = 1;
> 
> 
> 🎈方法二: 当我们写完方法一,在仔细看看这个代码,难道不像上题的斐波那契数列吗?
> 
> 
> 🎈方法三:因此也可以用递归来写;
> 
> 
> 🎈方法四:“剪枝”递归;
> 
> 
> 



> 
> 💊方法一:代码如下:
> 
> 
> 



public int jumpFloor0(int target) {
    if(target == 1){
        return 1;
    }
    if(target == 2){
        return 2;
    }
    int[] dp = new int[target + 1];
    dp[0] = 0;
    dp[1] = 1;
    dp[2] = 2;

    for (int i = 3; i <= target ; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    int num = dp[target];
    return num;
}


> 
> 💊方法二:代码如下:
> 
> 
> 



// 迭代
public int jumpFloor1(int target) {
    if(target == 1){
        return 1;
    }
    if(target == 2){
        return 2;
    }
    int a = 1;
    int b = 2;
    int c = 0;
    for(int i = 3;i <= target; i++){
        c = a + b;
        a = b;
        b = c;
    }
    return c;
}


> 
> 💊方法三:代码如下:
> 
> 
> 



// 递归
public int jumpFloor2(int target) {
    if(target == 1){
        return 1;
    }
    if(target == 2){
        return 2;
    }
    return jumpFloor2(target -1) + jumpFloor2(target -2);
}


> 
> 💊方法四:代码如下:
> 
> 
> 



// 减枝
private Map<Integer,Integer> filter = new HashMap<>();
public int jumpFloor(int target) {
    if(target == 1){
        return 1;
    }
    if(target == 2){
        return 2;
    }

    int pre = 0;
    if(filter.containsKey(target - 1)){
        pre = filter.get(target - 1 );
    }else {
        pre = jumpFloor(target - 1);
        filter.put(target - 1,pre);
    }

    int ppre = 0;
    if(filter.containsKey(target - 2)){
        pre = filter.get(target - 2);
    }else {
        ppre = jumpFloor(target - 2);
        filter.put(target - 2,ppre);
    }

    return pre + ppre;
}

### 🏀3. 矩形覆盖



> 
> **描述:**
> 
> 
> 我们可以用 2\*1 的小矩形横着或者竖着去覆盖更大的矩形。请问用 n 个 2\*1 的小矩形无重叠地覆盖一个 2\*n 的大矩形,从同一个方向看总共有多少种不同的方法?
> 
> 
> 


![img](https://img-blog.csdnimg.cn/img_convert/5ed8610dad7c94dae3926ec8b50b35a3.png)
![img](https://img-blog.csdnimg.cn/img_convert/c77c64c82257d9353f8616e9378f6233.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[如果你需要这些资料,可以戳这里获取](https://bbs.csdn.net/topics/618668825)**

15536209380)]
[外链图片转存中...(img-NwBIuhV9-1715536209380)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[如果你需要这些资料,可以戳这里获取](https://bbs.csdn.net/topics/618668825)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值