2024年最全开卷数据结构?时间和空间复杂度你可得把握住!!不行就让叔来~,2024年最新熬夜整理蚂蚁金服C C++高级笔试题

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

注:实际计算时间复杂度不一定要计算精确的执行次数,只需要大概执行次数(大O的渐进表示法)

大O的渐进表示法

大O符号(Big O notation)用于描述函数渐进行为的数学符号

  • 推导大O阶方法:
  1. 用常数1取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶
  • 简单来说:

大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数

  • 示例:
void Func(int N) {
int count = 0;
for (int i = 0; i < N ; ++ i) 
{
 for (int j = 0; j < N ; ++ j)
 {
     ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k) 
{
     ++count; 
}
int M = 10;
while (M--) 
{
     ++count; 
}
printf("%d\n", count);
}

执行的基本操作次数:F\left ( N \right )=N^2+2*N+10

大O的渐进表示法:
O\left ( N^2 \right )

  • 注意:

在实际中有些算法的时间复杂度存在最好、平均和最坏情况,一般情况关注的是算法的最坏运行情况

  • 示例:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

该数组中搜索数据时间复杂度为:O(N)

常见时间复杂度计算举例

  • 示例1:
void Func1(int N) {
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

时间复杂度为:O(N)

  • 示例2:
void Func2(int N, int M) {
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

时间复杂度为:O(N+M)

  • 示例3:
void Func3(int N) {
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

时间复杂度为:O(1)

注:并不是执行一次,而是表示常数次

  • 示例4:
// 计算strchr的时间复杂度?
//在字符串找字符,找到则返回对应地址(类似于遍历算法)
const char * strchr ( const char * str, int character );

时间复杂度为:O(N)

  • 示例5:
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n) {
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

执行次数表达式:n-1+n-2+n-3+…+1=n(n-1)/2(等差求和)

时间复杂度为:O(N^2)

  • 示例6:
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x) 
{
 assert(a);
 int begin = 0;
 int end = n-1;
 while (begin < end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid;
 else
 return mid;
 }
 return -1; 
}

执行次数表达:2^x=N

注:x为最差情况下的查找次数,N为数组长度

反向思考:从找到开始回推,每回推一次个数x2,经过x次最后总个数为数组总长度

时间复杂度为:O\left ( \log2N \right )

  • 示例7:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N) 
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N; 
}

执行次数表达式:n

时间复杂度为:O(N)

  • 示例8:
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N) 
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

注:实际上右边的调用会比左边更快结束,即右边会缺一些项

执行次数表达式:2^n-C(等比求和,C为常数)

时间复杂度为:O\left ( 2^n \right )

空间复杂度


img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

q?O%5Cleft%20%28%202%5En%20%5Cright%20%29)

空间复杂度


[外链图片转存中…(img-MQ0aL14M-1715761338663)]
[外链图片转存中…(img-GaCCiCMt-1715761338663)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值