网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度
注:实际计算时间复杂度不一定要计算精确的执行次数,只需要大概执行次数(大O的渐进表示法)
大O的渐进表示法
大O符号(Big O notation)用于描述函数渐进行为的数学符号
- 推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数
- 在修改后的运行次数函数中,只保留最高阶项
- 如果最高阶项存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶
- 简单来说:
大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数
- 示例:
void Func(int N) {
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
执行的基本操作次数:
大O的渐进表示法:
- 注意:
在实际中有些算法的时间复杂度存在最好、平均和最坏情况,一般情况关注的是算法的最坏运行情况
- 示例:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
该数组中搜索数据时间复杂度为:O(N)
常见时间复杂度计算举例
- 示例1:
void Func1(int N) {
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
时间复杂度为:O(N)
- 示例2:
void Func2(int N, int M) {
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}
时间复杂度为:O(N+M)
- 示例3:
void Func3(int N) {
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}
时间复杂度为:O(1)
注:并不是执行一次,而是表示常数次
- 示例4:
// 计算strchr的时间复杂度?
//在字符串找字符,找到则返回对应地址(类似于遍历算法)
const char * strchr ( const char * str, int character );
时间复杂度为:O(N)
- 示例5:
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n) {
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
执行次数表达式:n-1+n-2+n-3+…+1=n(n-1)/2(等差求和)
时间复杂度为:O(N^2)
- 示例6:
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
while (begin < end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid;
else
return mid;
}
return -1;
}
执行次数表达:
注:x为最差情况下的查找次数,N为数组长度
反向思考:从找到开始回推,每回推一次个数x2,经过x次最后总个数为数组总长度
时间复杂度为:
- 示例7:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}
执行次数表达式:n
时间复杂度为:O(N)
- 示例8:
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
注:实际上右边的调用会比左边更快结束,即右边会缺一些项
执行次数表达式:(等比求和,C为常数)
时间复杂度为:
空间复杂度
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
q?O%5Cleft%20%28%202%5En%20%5Cright%20%29)
空间复杂度
[外链图片转存中…(img-MQ0aL14M-1715761338663)]
[外链图片转存中…(img-GaCCiCMt-1715761338663)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新