悟已往之不谏,知来者之可追。_悟已往之不谏,知来者之可追。 为了实现自己的期望,为了弥补他人的失望 什么意思

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

时光荏苒,不知不觉我已求学十七八年。

我来自一个农村家庭,父亲初中学历,母亲小学学历。庆幸的是他们干了点小生意,经济条件还算过得去。报考大学专业的时候,我甚至是因为听着专业名字好听选择了电气工程及其自动化,因而没进入天坑。父母对我选择专业的态度是:我们都不懂,你看着报吧。大学前三年过的浑浑噩噩,打游戏吃外卖或靠室友带饭躺平度日,关系还算融洽,现在对那帮兄弟甚是想念。对于我的学习我父母基本上都是问,这次考了多少分,多少名,大学后从未问过,钱没了给钱,吃饱穿暖都没问题。我爸妈很希望我读书,但是他们并不懂得教育,我自己也不太懂,跌跌撞撞的也算考上了研究生,希望我能教育好下一代。我的研究生专业是电子信息控制方向,经过一段时间的项目跟进,不太喜欢,我的本科也学C和计算机原理之类的,也算一个半科班出身吧,遂与导师商讨更换到C/C++方向。

主流的后端开发语言以C++领衔,很多学了C++的同学会选择去面试后台开发的岗位。其实软件开发工程需要掌握的技能不外乎那么几点,各种经验分享和面经都已经说烂了。但是那些只是大的方向,具体涉及到的概念和技术点非常多,在这里也没办法全部罗列。后端开发需要你有扎实的C语言基础,这个基础扎实首先意味着你比较熟悉C++这门语言了,知道不同版本的语言特性(比如C++11以及新出的C++20的区别),对常见的语言机制(比如多态、虚函数表、模板等)的底层有自己理解。除此之外,编程能力的素养还体现在算法思想和数据结构的理解上。毕竟程序的基础就是算法和数据结构嘛。所以一些基本的数据结构,比如链表、数组、二叉树、队列之类的,还有一些基本的算法思想,比如贪心、分治、动态规划等都最好需要好好掌握一下。

学习一门编程语言首先学习基本语法。C语言的基础语法包括数据类型、运算符、表达式、数组、逻辑运算、函数、指针等。学习这些先买一本入门书籍,个人还是推荐经典的明解C语言,很经典的一本书。这本书对知识点的介绍都比较全面,涵盖面比较广。边学语法便敲案例,看着代码在计算机上运行起来是不是也有点小激动。这样便有了继续学习下去的动力。C语言深入的话推荐《c primer plus》,你会发现有些地方晦涩难懂,不要被疑问绊住脚步,浪费太多时间在细枝末节的地方。C语言只是你进入新世界的第一步而已,而编程的世界远比你想象的更广阔,更有意思。《c primer plus》更适合作为一本字典使用,放在电脑旁,方便随时查阅。想学好一门编程语言,仅仅是看书而不动手去练习是远远不够的,一定要把书里的代码搬到电脑里。大多数人是使用Windows系统,那么就先下载一个Visual Studio吧,推荐使用VS2019。喜欢Linux的朋友,可以下载一个VMWare虚拟机,在再虚拟机中安装Ubuntu等基于Linux内核的操作系统,然后再安装gcc,gdb。安装好开放环境之后,就可以开始愉快的敲代码了,试着写一些简单而有趣的代码,比如 Hello World,文件读写,逻辑运算、常用算法等等。推荐的做法是把书中的例子,完全自己手动敲一遍,找找感觉,这个很重要。把自己觉得抽象难懂的程序放到VS中跑一跑,调试一番,会有很多发现。很多代码在调试之后就能理解,会有一种恍然大悟的快感。我以前电脑里就经常会有一个Test工程文件夹,哪里有疑惑,就把代码放进去,一Debug,全部疑惑就解开了。然后把这些总结整理起来,这样知识就变成自己的了。推荐使用印象笔记进行记录,很方便,随时可以查阅。

学习编程时间分配因人而异,视原有基础,学习效率,等因素制约。私以为我的学习效率还蛮高的,每天分配5个小时在编程上,一周七天,算上英语口语学习,体育锻炼,学校琐事,本人就像一只大陀螺,996福报自叹不如,学习更多的是总结,编程也是,学习编程不能手懒且容易犯眼高手低的错误,当然,我刚开始就是手懒,写代码长期停滞于Helloword水平,希望在座的家人们引以为戒。

本人并非卷王,受大环境驱使不上不下,难堪其忧,研究生毕业后希望能进一个不是太卷的IT公司吧。咦?我现在这种生活状态转去996真的算是福报了。(目前9-10-7)

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

https://bbs.csdn.net/topics/618679757)**

### YOLOv8 的原理与应用 #### YOLOv8 的基本原理 YOLO (You Only Look Once) 是一种实时目标检测算法,其核心思想是将目标检测问题转化为回归问题。YOLOv8 继承并改进了前几代版本的优点,在速度和精度之间取得了更好的平衡[^1]。 - **单阶段检测器**:相比两阶段的目标检测方法(如 Faster R-CNN),YOLO 系列采用单一神经网络完成边界框预测和类别分类的任务。 - **网格划分**:输入图像被划分为 S×S 的网格结构,每个网格负责预测属于该区域的对象及其位置。 - **损失函数设计**:通过自定义的多任务损失函数来联合训练对象置信度、坐标偏移量以及类别的概率分布[^2]。 #### 转换与优化部署 为了适应同硬件平台的需求,可以利用 TensorRT 或 OpenVINO 工具链对预训练好的 YOLOv8 模型文件进行转换处理,从而实现更高效的推理性能表现: ```bash from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载官方提供的轻量化权重 success = model.export(format='onnx', simplify=True, opset=12) ``` 上述脚本展示了如何借助 Ultralytics 库导出 ONNX 格式的模型表示形式以便后续进一步编译适配至特定计算单元之上。 #### 小目标增强技术 SAHI 集成 针对传统检测框架难以捕捉到的小尺寸物体情况,引入 Slice-and-Half-Inference(SAHI) 方法能够显著提升识别效果。它的工作机制主要是先将整张图片分割成若干重叠子块后再逐一送入网络分析最后再拼接回原图域得到最终结果。 ```python from sahi.predict import get_sliced_prediction from sahi.model import YoloModel # 初始化 YOLOv8 检测引擎实例 detection_model = YoloModel(model_path="best_yolov8.pt", confidence_threshold=0.3) result = get_sliced_prediction( image, detection_model, slice_height=512, slice_width=512, overlap_ratio=0.2 ) ``` 以上代码片段体现了当面对复杂场景或者含有大量微小个体样本时可采取的有效策略之一即分片操作配合高分辨率扫描模式来进行精确标注定位服务支持等功能扩展可能性极大增加用户体验满意度水平等方面均有所体现出来。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值