收集整理了一份《2024年最新物联网嵌入式全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升的朋友。
需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人
都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
基于b站DR_CAN老师的MPC控制视频【MPC模型预测控制器】4_数学建模推导–Matlab代码详解_哔哩哔哩_bilibili的学习分享如下:
一、研究目的
在约束条件(物理限制)下达到最优的系统表现。
1.对于单输入单输出(SISO)系统:
越小,跟踪能力越强;
越小,输入越小,能耗越低。(用平方项来衡量e、u的绝对值大小)
2.代价函数Cost Function
,通过设计u,寻找最小的J的过程为最优化
其中q,r为调节参数
①若q>>r,则误差e对于设计系统的影响权重更大
②若r>>q,则系统设计更看重输入u
3.对于多输入多输出(MIMO)系统:
状态空间:
代价函数:
具体地,例如已知系统, ,系统的参考目标,则误差矩阵
其中,Q,R为调节矩阵,,,,为系统最优时的权重系数。
二、基本概念
MPC(Model Predictive Control)模型预测控制:通过模型来预测系统在某一未来时间段内的表现来进行优化控制,多用于数位控制,用离散的状态空间表达,即
实现步骤:
Step1:估计/测量读取当前k时刻的系统状态
Step2:基于的选择进行最优化
代价函数:
其中,为k时刻的误差矩阵,为k时刻的输入矩阵,为终端(N时刻)误差,Q,R为调节矩阵,F为终端误差权重矩阵
Step3:实施一步(即从t=k运行到t=k+1即可)
下一次从t=k+1时重复Step1到3,重新预测的输入
即每一轮的预测都是预测区间和控制区间整体右移一个单位,整个过程是向右滚动的,
称为滚动优化控制(Receding Horizon Control),系统对控制器的计算能力要求高。
三、MPC最优化建模
(对于模型求解的原理是基于二次规划(Quadratic Programming)模型的求解,通过调用Matlab、Python等二次规划函数求解,下面的代码用到Matlab的quadprog函数)
1.如何建立二次规划模型
已知系统模型:X(k+1) = AX(k) + BU(k),输出Y=X,参考目标Refer=0
其中,X(k+1) 为k+1时刻的状态变量,X(k) 为k时刻的状态变量,U(k)为k时刻的输入变量。
在k时刻:
①设u(k+i | k)表示在k时刻预测的第k+i时刻的输入值,在预测区间N内,有,即
同理,,x(k+i | k)表示在k时刻预测的第k+i时刻的系统状态
②误差E=Y-Refer=X-0=X
代价方程
即(误差加权和 + 输入加权和 + 终端误差项)
③初始条件(k时刻)
预测的k+1时刻
预测的k+2时刻
预测的k+N时刻
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新
需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)
,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新**
需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)