算子代数:c代数有诱导极限

算子代数:C*代数有诱导极限

1. 背景介绍

1.1 算子代数概述

算子代数是现代数学的一个重要分支,它研究Hilbert空间上有界线性算子的代数结构。算子代数的概念最早由匈牙利数学家冯·诺伊曼(John von Neumann)在20世纪30年代引入,旨在为量子力学提供数学基础。

1.2 C*代数的定义与性质

C代数是算子代数的一个重要类别,它是一个带有共轭转置和范数的Banach代数,并满足C恒等式$|a^a|=|a|^2$。C代数在算子代数理论和非交换几何中有着广泛的应用。

1.3 诱导极限的概念

诱导极限(inductive limit)是一种构造新的数学对象的方法,通过已有对象的逐步逼近来定义新对象。在拓扑学、代数学等领域都有诱导极限的概念。本文将探讨C*代数中的诱导极限及其性质。

2. 核心概念与联系

2.1 有向集与诱导序

有向集(directed set)是一个偏序集$(I,\leq)$,对于任意$i,j\in I$,都存在$k\in I$使得$i\leq k$且$j\leq k$。有向集是定义诱导极限的基础。

诱导序(inductive order)是指在有向集$I$上的一族对象${X_i}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值