算子代数:C*代数有诱导极限
1. 背景介绍
1.1 算子代数概述
算子代数是现代数学的一个重要分支,它研究Hilbert空间上有界线性算子的代数结构。算子代数的概念最早由匈牙利数学家冯·诺伊曼(John von Neumann)在20世纪30年代引入,旨在为量子力学提供数学基础。
1.2 C*代数的定义与性质
C代数是算子代数的一个重要类别,它是一个带有共轭转置和范数的Banach代数,并满足C恒等式$|a^a|=|a|^2$。C代数在算子代数理论和非交换几何中有着广泛的应用。
1.3 诱导极限的概念
诱导极限(inductive limit)是一种构造新的数学对象的方法,通过已有对象的逐步逼近来定义新对象。在拓扑学、代数学等领域都有诱导极限的概念。本文将探讨C*代数中的诱导极限及其性质。
2. 核心概念与联系
2.1 有向集与诱导序
有向集(directed set)是一个偏序集$(I,\leq)$,对于任意$i,j\in I$,都存在$k\in I$使得$i\leq k$且$j\leq k$。有向集是定义诱导极限的基础。
诱导序(inductive order)是指在有向集$I$上的一族对象${X_i}