Transformer大模型实战:将知识从BERT模型迁移到神经网络中
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:知识迁移,BERT,Transformer,神经网络整合
1. 背景介绍
1.1 问题的由来
在深度学习时代,预训练模型如BERT(Bidirectional Encoder Representations from Transformers)因其在自然语言处理任务上的卓越性能而受到广泛关注。BERT等预训练模型能够捕捉文本的上下文信息,为后续任务提供有效的特征表示。然而,这些大型模型通常在特定任务上进行微调,以适应特定的下游任务需求。对于希望在多个任务之间共享知识的场景,如何有效地将BERT的知识迁移到其他类型的神经网络中,成为一个具有挑战性但也极具价值的问题。
1.2 研究现状
目前,知识迁移研究主要集中在两个方向:一是从现有模型中提取可复用的知识或特征,二是将知识整合到不同的模型结构中,以增强模型的泛化能力和适应性。在这篇文章中,我们将探索将BERT的知识迁移到神经网络中的具体途径,特别是通过知识蒸馏

订阅专栏 解锁全文
454

被折叠的 条评论
为什么被折叠?



