Recurrent Neural Networks (RNN) 原理与代码实战案例讲解
1. 背景介绍
1.1 问题的由来
在处理诸如语音识别、自然语言处理、时间序列预测等序列数据时,传统的前馈神经网络(Feedforward Neural Networks)难以捕捉输入序列之间的依赖关系。这是因为前馈网络在处理输入时,没有记忆前一时刻的状态信息,即无法“记住”之前的输入,这限制了它处理长序列数据的能力。
1.2 研究现状
为了解决这一问题,研究者们引入了循环神经网络(Recurrent Neural Networks, RNN),这类网络通过在每一时刻的状态中融入前一时刻的信息,从而能够处理具有时间序列特性的数据。RNN 的出现极大地扩展了神经网络处理序列数据的范围,使其在语音识别、文本生成、机器翻译等多个领域展现出卓越性能。
1.3 研究意义
RNN 的研究意义在于突破了神经网络处理固定长度输入的局限,为解决长期依赖问题提供了理论基础和技术手段。通过引入循环结构,RNN 能够在序列中建立有效的前后文联系,这对于许多依赖于历史信息进行预测或决策的任务至关重要。