AI大模型在电商平台商品推荐解释中的应用
关键词:电商平台,商品推荐系统,大模型,推荐解释,解释模型,解释性,深度学习
1. 背景介绍
随着电子商务的兴起,电商平台商品推荐系统已逐渐成为提高用户体验和增加销售额的关键工具。传统的推荐系统主要基于用户历史行为进行推荐,但这种方法存在固有的冷启动问题和数据稀疏性问题。因此,需要更高级的技术来提高推荐系统的质量和效率。近年来,大模型在电商平台商品推荐中的应用逐渐增多,而AI大模型在推荐系统中的应用也引起了广泛关注。
1.1 问题由来
电商平台商品推荐系统需要根据用户的历史行为和偏好,预测其可能感兴趣的商品,并根据预测结果为用户推荐商品。传统的推荐系统使用协同过滤、基于内容的推荐、矩阵分解等算法进行推荐,但这些算法存在以下问题:
- 数据稀疏性:用户历史行为数据往往非常稀疏,导致推荐效果不理想。
- 冷启动问题:新用户或新商品往往没有足够的行为数据,难以进行有效的推荐。
- 推荐结果难以解释:推荐结果依赖于复杂的模型,难以解释其背后的逻辑和原因。
大模型在推荐系统中可以提供一种新的解决方案。大模型经过大规模无监督预训练,具备强大的特征提取能力和泛化能力,能够