随着人工智能技术的飞速发展,大模型,尤其是在自然语言处理(NLP)领域的变革性影响,已经引起了广泛的关注。本文将详细介绍如何系统地入门和学习大模型,帮助初学者有效地掌握这一前沿技术。
- 理解大模型的基本概念首先,理解什么是大模型非常重要。简而言之,大模型指的是具有大量参数和复杂结构的机器学习模型,常用于处理和生成语言、图像、音频等数据。例如,GPT(生成式预训练变换器)、BERT(双向编码器表示变换器)和其他一些大规模的深度学习模型都属于此类。
- 学习必要的数学基础大模型的学习与应用依赖于坚实的数学基础,包括概率论、统计学、线性代数和微积分。这些数学工具是理解模型如何工作的基础,也是优化算法和模型性能的关键。
- 掌握编程和算法基础掌握至少一种编程语言(如Python)是入门大模型的必要条件。Python 由于其丰富的库和框架(如TensorFlow和PyTorch)在AI研究和应用中非常流行。此外,了解基本的算法和数据结构也非常重要,这有助于更好地设计和实现复杂的模型。
- 学习机器学习和深度学习的核心概念在熟悉了必要的数学和编程技能后,接下来需要系统学习机器学习的基本理论和方法,特别是深度学习。这包括了解监督学习、非监督学习、强化学习等概念,以及如何应用这些方法解决实际问题。
- 深入研究大模型架构了解不同的大模型架构对于深入学习非常关键。可以从研究最初的大模型如AlexNet开始,逐步过渡到更复杂的网络如Transformer和BERT。研究它们的架构可以帮助理解其内部机制和关键技术,如注意力机制、预训练技术等。
-
- 实践和应用理论知识的学习需要通过实践来巩固。可以参与在线竞赛如Kaggle,或在GitHub上贡献和参与开源项目,这不仅可以提高技能,还能帮助建立与其他开发者的联系。7. 继续教育和研究随着技术的不断进步,持续学习是非常必要的。可以通过阅读最新的研究论文、参加专业会议和研讨会,或获取相关领域的进阶课程来保持知识的更新。
通过遵循以上步骤,你可以系统地入门和掌握大模型。此外,保持好奇心和持续学习的态度对于在AI领域取得成功至关重要。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取