AI大模型实战案列:三分钟原创一部儿童故事短视频(附完整操作步骤)

第一分钟:明确儿童故事创意和编写Prompt提示词

这部分包含两部分:

  • 明确儿童故事创意:因为是儿童故事,我相信大家能想象出很多的创意,耳熟能详的包括龟兔赛跑、守株待兔、亡羊补牢等,老牛同学今天的创意是小猫钓鱼故事。

  • 编写Prompt提示词:编写Prompt提示词是一个技术活,目前还可作为一份职业,Prompt提示词的好坏,直接影响着AI大模型的输出结果。Prompt提示词的编写技巧,可以参考老牛同学的文章:[高效编写大模型 Prompt 提示词,解锁 AI 无限创意潜能]

老牛同学新小猫钓鱼记故事创意的Prompt提示词如下:

你是一位儿童故事方面的专家,博学多才,大家都很喜欢你幽默有趣的风格。现在你要给大家讲"新小猫钓鱼记"的故事。
------
要求:
 - 故事内容是大家都耳熟能详的"小猫钓鱼"的故事,故事情节要生动有趣,幽默,重要情景要扣人心弦,能够吸引读者的兴趣,引起共鸣。故事内容要求正能量,积极向上,不能包含任何引起小孩子们的不适的内容。小孩子们在看万故事后能从中学到东西和感悟。

 - 故事内容分为三部分,内容富有新意,情节递进曲折,故事结尾需要进行升华。故事内容长度在500个汉字以内。

 - 输出格式仅包含故事内容,不需要输出任何前缀文本、引导文本、提示文本等内容


```![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/aa96b2f854c746b881dc07dea91d1324.jpeg#pic_center)

### [](https://blog.csdn.net/2401_84204413/article/details/139698916?spm=1001.2014.3001.5502)第二分钟:借助Llama 3等大模型生成故事内容🎨

把以上故事创意**Prompt提示词**输入到Llama 3大模型中,即可生成故事内容,老牛同学的**新小猫钓鱼记**故事内容如下(特别注意,由于大模型的**计算不可约性**原理,不同大模型或者相同大模型,多次输入的产出内容可能不一样):

在一个阳光洒满大地的清晨,小猫咪咪揣着爷爷的旧钓鱼竿,踏上了寻找“传说中最聪明的鱼”的奇妙旅程。

咪咪来到碧波荡漾的小河边,架好钓竿,满心期待。可时间一分一秒过去,除了偶尔跳起的水花,鱼儿们似乎集体放假了。就在这时,一只戴着墨镜的酷酷小乌龟慢悠悠爬过来,调侃道:“嘿,小家伙,钓鱼可不能急哦,我爷爷的爷爷曾经告诉我,真正的高手都是‘静待花开’的!”咪咪听了,想了想,决定换个方式——它开始吹泡泡、唱小曲,用轻松愉快的心情等待。不久,一条小鱼竟然被这不同寻常的“鱼饵”吸引了!

小鱼可不是轻易上钩的,它围着钓饵转圈圈,仿佛在说:“想抓我?先来一场智慧的较量吧!”咪咪灵机一动,用尾巴轻拍水面,模仿鱼群游动的声音。小鱼果然好奇,慢慢靠近,就在即将咬钩的一刹那,它却突然转身游走,留下一句:“哈哈,今天心情好,放你一马!”咪咪被逗乐了,它意识到,原来钓鱼不只是技巧,更是一场与自然的和谐共舞。

日落时分,咪咪虽然没钓到“最聪明的鱼”,却意外收获了与小鱼和其他小动物们的友情。它们围坐在河边,分享着各自的故事,咪咪明白了:生活中最大的宝藏不是钓到多少鱼,而是这段旅程中遇见的朋友和学会的耐心、智慧。夕阳映照下,咪咪宣布:“明天我要开个‘河畔故事会’,谁都有机会成为主角!”大家欢呼雀跃,小河畔充满了欢声笑语。

从此,咪咪和它的新朋友们,不仅在河边留下了无数欢笑,也在彼此的心中种下了友谊的种子。小猫咪咪学会了,生活就像这不断流淌的河水,每一次尝试和挑战,都可能带给你意想不到的美好。而真正的胜利,是拥有一颗善良、乐观、永远好奇的心。

第三分钟:借助「剪映」图文生成功能生成短视频

目前还没有根据文本生成视频的开源大模型,国外OpenAI发布的Sora大模型,我们目前无法访问。幸运的是,国内剪映有类似的功能,可根据文本内容,自动匹配素材并生成视频。

  • 打开剪映App,点击图文成片按钮:

图文成片

  • 在“图文成片”页,点击自由编辑文案按钮:

自由编辑文案

  • 输入新小猫钓鱼记文本内容,点击应用按钮:

自由编辑文案

  • 在底部弹框选择智能匹配素材选项

智能匹配素材

  • 即可开始制作视频:

制作视频

  • 最导出视频即可:

导出视频

导出的视频存储在手机中了~

最后总结

到目前为止,我们的原创视频制作完成了。

剪映的智能匹配素材功能,虽然方便我们视频制作过程,但老牛同学的新小猫钓鱼记匹配的素材,感觉都是根据每句文案产出,并没有上下文关联,导致素材一会儿是动漫风格、一会儿是现代网络图片等,全文的素材特别不协调。

而反观OpanAI的Sora根据Prompt提示词制作的视频,全文内容一致、形象逼真,真心希望我们大模型能快速发展,赶超国际水平~

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值