24.4k Star!Flowise :LLM开源低代码工具、可视化的LangChain实现、可定制AI Agent
Aitrainee | 公众号:AI进修生:AI算法工程师 / Prompt工程师 / ROS机器人开发者 | 分享AI动态与算法应用资讯,提升技术效率。
排版不佳,公众号阅读原文:24.4k Star!Flowise :LLM开源低代码工具、可视化的LangChain实现、可定制AI Agent
🌟拖放 UI 以构建您的定制 LLM 流程:
Flowise,一个用户友好的、无代码的平台,它简化了构建LangChain工作流的过程, 允许开 发人员创建LLM应用程序,而无需编写代码。
F lowise的关键特性,包括拖放式UI、用户友好性和多功能性。
通过直观的拖放界面简化LangChain流程开发
Flowise为开发人员提供了一个特殊的工具,旨在构建LLM应用程序,而无需深入研究编码。
对于努力以敏捷方式快速构建原型并开发LLM应用程序的组织来说,这同样是有益的。让我们来看看Flowise AI的一些突出功能:
-
• 拖放式UI: Flowise使设计自己的自定义LLM流程变得简单。
-
• 开源: 作为一个开源项目,Flowise可以自由使用和修改。
-
• 用户友好: Flowise很容易上手,即使对那些没有编码经验的人也是如此。
-
• 通用: Flowise AI可用于创建各种LLM应用程序。
示例1: 构建基本LLM链
遵循以下步骤:
- 1. 在空白画布上,单击”+ Add New”按钮以调出左侧的”Add Nodes”面板。
- 2. 从“Add Nodes”面板中选择以下组件,它们将出现在画布上:
* • 从LLMs中将OpenAI拖到面板
* • 从Chains分类中拖出LLM chain
* • 从Promps分类中拖出Prompt Template
现在,画布应该是这样的:
- 1. 连接组件
* • 将OpenAI的输出(output)链接到LLM Chain的语言模型(input)
* • 将Prompt Template的输出(output)链接到LLM Chain的Prompt(input)
- 1. 输入必要的信息
• 在OpenAI的字段中输入OpenAI密钥
• 将以下prompt模板写入“Prompt Template”的Template字段中:
What is a good name for a company that makes {product }?
* • 给LLM Chain一个名字.
* • 单击右上角的“保存”图标进行保存.
* • 点击右上角的聊天图标,就可以开始发送“产品名称”了。在这里,我们得到了预期的答案.
示例2: 构建PDF阅读器Bot
在之前的一篇博文中,我演示了如何使用LangFlow创建PDF Reader Bot。现在,让我们使用Flowise创建相同的机器人。
将以下组件添加到空白画布中:
-
• 从“Text Splitters”中选择“Recursive Character Text Splitter”(递归字符文本分割器)
-
• 从“Document Loaders”中选择“PDF file”
-
• 从“Embeddings”中选择“OpenAI Embeddings”
-
• 从“Vector Stores”中选择“In-memory Vector Store”(内存向量存储)
-
• 从“LLMs”中选择“OpenAI”
-
• 从“Chains”中选择“Conversational Retrieval QA Chain”(对话检索QA Chain)
现在我们在画布中拥有了所有必需的组件。
连接组件
-
1. 链接“Recursive Character Text Splitter” 的输出和 “PDF file” 的输入
-
2. 链接“PDF file” 的输出和 “In-memory Vector Store”的输入
-
3. 链接“OpenAI Embeddings” 的输出和“In-memory Vector Store” 的输入
-
4. 链接“In-memory Vector Store” 的输出和 “Conversational Retrieval QA Chain”的输入
-
5. 链接“OpenAI” 的输出和 “Conversational Retrieval QA Chain” 的输入
输入必要的信息
-
1. 点击“PDF File”中的“Upload File”,上传标题为“Introduction to AWS Security”的示例PDF文件。
-
2. 在“OpenAI”和“OpenAIEmbeddings”字段中输入您的OpenAI密钥
-
3. 单击“save”按钮,然后单击聊天按钮开始发送请求。
⚡ 快速入门
下载并安装 NodeJS >= 18.15.0
-
1. 安装 Flowise
npm install -g flowise
-
2. 启动 Flowise
npx flowise start
使用用户名和密码
npx flowise start --FLOWISE_USERNAME=user --FLOWISE_PASSWORD=1234
- 3. 打开 http://localhost:3000
🐳 Docker
Docker Compose
-
1. 进入项目根目录下的
docker
文件夹 -
2. 创建
.env
文件并指定PORT
(参考.env.example
) -
3. 运行
docker-compose up -d
-
4. 打开 http://localhost:3000
-
5. 可以通过
docker-compose stop
停止容器
Docker 镜像
-
1. 本地构建镜像:
docker build --no-cache -t flowise .
-
2. 运行镜像:
docker run -d --name flowise -p 3000:3000 flowise
-
3. 停止镜像:
docker stop flowise
👨💻 开发者
Flowise 在一个单一的代码库中有 3 个不同的模块。
-
•
server
:用于提供 API 逻辑的 Node 后端 -
•
ui
:React 前端 -
•
components
:第三方节点集成
先决条件
-
• 安装 PNPM
npm i -g pnpm
设置
-
1. 克隆仓库
git clone https://github.com/FlowiseAI/Flowise.git
-
2. 进入仓库文件夹
cd Flowise
-
3. 安装所有模块的依赖:
pnpm install
-
4. 构建所有代码:
pnpm build
-
5. 启动应用:
pnpm start
现在可以在 http://localhost:3000 访问应用
- 6. 用于开发构建:任何代码更改都会自动重新加载应用程序,访问 http://localhost:8080
* • 在 ` packages/ui ` 中创建 ` .env ` 文件并指定 ` VITE_PORT ` (参考 ` .env.example ` )
* • 在 ` packages/server ` 中创建 ` .env ` 文件并指定 ` PORT ` (参考 ` .env.example ` )
* • 运行
pnpm dev
🔒 认证
要启用应用程序级身份验证,在 packages/server
的 .env
文件中添加 FLOWISE_USERNAME
和 FLOWISE_PASSWORD
:
FLOWISE_USERNAME=user
FLOWISE_PASSWORD=1234
🌱 环境变量
Flowise 支持不同的环境变量来配置您的实例。您可以在 packages/server
文件夹中的 .env
文件中指定以下变量。了解更多信息,请阅读 文档
📖 文档
[Flowise 文档]:(https://docs.flowiseai.com/)
🌐 自托管
在您现有的基础设施中部署自托管的 Flowise,我们支持各种 部署
-
• AWS
-
• Azure
-
• Digital Ocean
-
• GCP
— 完 —