【搭建AI大模型】从0到1搭建本地大模型,最简单的方法!

前言

最近忙着研究一些新的AI工具,其中一个就是Ollama,可能有些朋友还不太熟悉它,这是一款能让你在本地运行各种大模型的神器。

无论你使用的是PC、Mac,还是小巧玲珑的树莓派,Ollama都能完美适配,真的很方便。

今天就和大家聊聊如何利用Ollama在本地轻松运行大模型,并使用现代化的UI界面和大模型聊天。

好了,废话不多说,进入正题啦!

1、初识Ollama

首先,要使用Ollama,你需要先安装它,这部分其实非常简单,就像那天坐在电脑前吃着薯片,几分钟搞定一样。

你只需要访问Ollama的官网(ollama.com或者ollama.ai),选择适合你操作系统的版本下载。

安装过程不复杂,和其他软件一样,几下点击就搞定了。

安装完成后,打开cmd终端,输入命令`ollama run 模型名称`即可运行,比如:

ollama run llama3.1

这个命令会自动下载并配置对应的大模型文件,非常省心。

如果你对有哪些模型可以使用不太清楚,可以去Ollama官网看看,每种模型都有详细介绍和版本选择。

一般来说,7B的模型需要至少8G内存,13B需要16G内存,33B需要32G内存。

一定要根据自己的硬件配置来选择,否则运行时有可能会很卡。

2、Open WebUI:大模型伴侣

在默认设置下,你需要在终端中和大模型进行交互,虽然这是个不错的选择,但看着一长串代码和黑色背景,实在有些沉闷。

如果你也觉得如此,不妨试试Open WebUI,这个工具可以给你带来更现代化的操作体验。

安装Docker,这是一个虚拟容器工具,简单来讲,Docker就像一个万能的小盒子,把所有环境依赖都装到一个盒子里,运行起来特别方便。

访问Docker官网:

https://www.docker.com/products/docker-desktop

下载对应操作系统的Docker安装包并安装。

安装好Docker后,在终端执行Open WebUI的安装命令:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

不出意外的话几分钟后,你就能在本地浏览器上打开一个简洁友好的Web界面,这下再也不用面对黑乎乎的终端了。

3、打造本地知识库

Open WebUI不仅能让你和大模型轻松互动,还支持RAG(Retrieval-Augmented Generation)能力,这意味着你可以让大模型参考网页和文档内容。

如果你想让大模型读取某个网页的内容,只需在链接前加上“#”。例如提示词:“读取这个网页的内容,#https://example.com”。

如果你要读取文档内容,可以直接在对话框中导入文件,或者到Documents页面上传。

这样一来,所有文档都能成为大模型的参考资料,大大提升工作的效率和效果。

在对话框中输入“#”,会显示出所有已导入的文档,你可以选择其中一个或者多个,甚至可以让大模型参考所有的文档。

无论是工作上的文档管理还是个人知识储备,这个功能相当于打造了一个高效的本地知识库。

借助Ollama+Open WebUI这样的工具,我们每个人都能拥有自己的专属AI大模型,个人能力加倍放大。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### 构建和部署本地AI大模型知识库 #### 选择合适的工具和技术栈 为了在本地环境中构建和部署AI大模型的知识库,可以考虑使用Ollama这样的平台来简化操作流程[^1]。 Ollama允许用户轻松安装并配置大型语言模型,在本地机器上实现高效运行。 #### 配置开发环境 确保计算机具备足够的硬件资源支持(如GPU加速),接着按照官方文档指导完成必要的软件包安装与依赖项设置。对于Python项目而言,创建虚拟环境有助于隔离不同项目的依赖关系: ```bash python3 -m venv my_venv source my_venv/bin/activate pip install --upgrade pip setuptools wheel ``` #### 获取预训练模型 许多开源社区提供了可以直接下载使用的高质量预训练模型权重文件。通过Hugging Face等网站获取所需的大规模自然语言处理模型,并将其保存到指定目录下以便后续加载调用[^2]。 #### 实现基于Web的应用程序接口(API) 为了让最终用户能够方便地与这些强大的AI能力互动交流,建议开发一套RESTful API服务端逻辑作为中介层连接前端界面同后台计算节点之间的通信桥梁。Flask框架因其简洁易懂而成为理想的选择之一: ```python from flask import Flask, request, jsonify import torch from transformers import AutoModelForCausalLM, AutoTokenizer app = Flask(__name__) model_name_or_path = "path/to/local/model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to('cuda') @app.route('/api/chat', methods=['POST']) def chat(): input_text = request.json.get("message", "") inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) response_message = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response": response_message}) if __name__ == "__main__": app.run(host='0.0.0.0', port=8080) ``` 此段代码展示了如何利用Transformers库中的`AutoModelForCausalLM`类实例化一个因果语言生成器对象,并定义了一个简单的HTTP POST请求处理器用于接收客户端发送的消息体内容后返回经过推理产生的回复字符串。 #### 整合检索增强型生成(Retrieval-Augmented Generation,RAG) 如果希望进一步提升对话系统的智能化水平,则可以在上述基础上引入RAG机制——即先从结构化的数据库或非结构化的文本集合中提取最相关的信息片段供LLM参考再给出更加精准的回答方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值