前言
这篇文章测试14b模型,快速引导你完成在本地运行DeepSeek模型的安装过程,并分享一个在笔记本电脑上的性能测试供你参考。
让我们开始吧。
以下是我的笔记本系统概况:
安装步骤
-
下载Ollama:https://ollama.com/
-
(可选)安装后,如果你想更改默认的Ollama模型目录,可以打开终端/命令提示符来进行更改。因为我是Windows用户,我打开了命令提示符并执行了以下命令:
setx OLLAMA_MODELS E:\Yourpath\YourFolder
在这里,我将默认目录更改为E盘,考虑到存储问题。大型语言模型(LLM)会快速消耗大量空间,可能会占满你的C盘。为避免这种情况,我建议合理分区并尽量将大文件存放在C盘之外。
打开任务管理器并结束正在后台运行的ollama.exe进程。这个步骤在下载任何模型之前至关重要,它确保我们刚才所做的环境变量更改生效。
(如果你在更改目录时遇到问题,可以查看这个issue:https://github.com/ollama/ollama/issues/2551)
3. 访问 https://ollama.com/search 并选择 DeepSeek-r1
根据你的笔记本或台式机的GPU和内存,从下拉菜单中选择与你的系统配置匹配的选项。然后,复制右侧的命令并在命令提示符中执行。
在这里,我选择测试DeepSeek-r1 14b模型,看看我的笔记本(4070 8GB)表现如何。
测试
这是我进行的一个快速测试,目的是评估模型的利用率和性能:
提问:9.11和9.9,哪个数字更大?
模型处理大约用了62秒才完成并输出答案。查看一分钟的视频,实时性能表现如下:
结果总结
GPU利用率从6%上升至约30%,在会话期间达到48%的峰值。
CPU利用率在会话期间保持在30%到40%之间。
温度和CPU核心电压都保持在安全范围内。
(注意:英特尔芯片在高电压下有降级问题,因此需要验证你的型号是否受到影响。对于i7系列,桌面芯片如Intel Core i7-14700K(F)和13700K(F)报告遇到过此类问题。由于我的CPU是笔记本芯片(i7-14700HX),电压高达1.5V仍然被认为是安全的。)
在测试过程中,我的笔记本上运行了常用的应用程序(浏览器打开了20多个标签页、通信应用等)。
考虑到其性能,在笔记本上本地运行DeepSeek-r1 14b是完全可行的。
我认为本地运行模型有多个好处,尤其是在隐私、安全、成本效益和定制方面。
DeepSeek-r1使得LLM模型对普通用户来说更加实惠和可访问。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

DeepSeek全套安装部署资料
大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
