生成式AI智能体白皮书解读:剖析架构、工具与应用,展望智能新未来

生成式AI智能体白皮书解读:剖析架构、工具与应用,展望智能新未来

一、引言

生成式AI智能体(Agents)融合推理、逻辑及外部信息获取能力与生成式AI模型,引发AI领域新变革。人类常借助工具辅助决策,受此启发,生成式AI模型也能经训练使用工具,实现与现实世界交互,执行多样化任务,智能体概念应运而生。本白皮书围绕智能体展开,详细探讨其架构、工具、应用及发展潜力。

二、智能体基础架构

(一)智能体定义

智能体可定义为通过观察世界、运用工具达成目标的应用程序,具备自主性与主动性,能在无人类明确指令时,自主规划行动步骤。本文聚焦生成式AI模型构建的特定智能体类型,深入剖析其内部工作机制。

(二)核心组件

  1. 模型:作为智能体决策核心的语言模型(LM),可选择单模型或多模型组合,规模大小各异,能遵循ReAct、思维链(CoT)或思维树(ToT)等推理框架。选择模型时,应契合最终应用需求,并基于相关数据签名训练,虽模型训练通常不依赖智能体特定配置,但可通过示例优化智能体任务。

  2. 工具:基础模型受限于与外部世界交互能力,工具则打破这一局限,使智能体得以与外部数据和服务交互,扩展操作范围。常见工具形式包括扩展、函数和数据存储,它们在智能体与外部世界间架起桥梁,为智能体赋能。

  3. 编排层:编排层控制智能体信息获取、内部推理及行动决策流程,以循环方式持续运行直至达成目标。其复杂程度因智能体及任务而异,运用提示工程框架指导推理规划,是智能体认知架构的核心部分。

三、智能体与模型对比

模型知识局限于训练数据,基于用户查询进行单一推理预测,缺乏会话管理和原生工具、逻辑层实现。而智能体通过工具扩展知识,能管理会话历史,实现多轮推理预测,原生实现工具和采用特定认知架构,在能力和应用场景上明显超越模型。

四、认知架构:智能体的运作机制

以厨师在厨房的工作流程为例,智能体的认知架构与之相似。厨师收集顾客点餐和食材信息,进行内部推理规划菜品,随后执行烹饪操作,并依据食材消耗和顾客反馈调整计划。智能体同样通过信息收集、规划、执行和调整的循环达成目标,编排层在其中负责维护记忆、状态,指导推理规划。

当前流行的提示工程框架和推理技术为智能体编排层提供支持:

1. ReAct:为语言模型提供思维策略,使模型能依据用户查询推理并行动,提升了人与大语言模型(LLM)的互操作性和信任度。

  1. 思维链(CoT):通过中间步骤实现推理,其子技术如自一致性、主动提示和多模态CoT,适用于不同应用场景。

  2. 思维树(ToT):适合探索性和前瞻性任务,允许模型探索多种思维链,作为解决问题的中间步骤。

以使用ReAct框架的智能体为例,其处理用户查询流程如下:用户发送查询后,智能体执行ReAct序列,向模型发出提示生成下一步行动及输出,包括问题、思考、动作、动作输入、观察等环节,经多次循环后给出最终答案。在这一过程中,智能体选择合适工具获取外部信息,辅助模型做出更准确决策。

五、工具:连接智能体与外部世界

工具是智能体与外部世界交互的关键,主要包括扩展、函数和数据存储三种类型。

  1. 扩展:标准化连接智能体与API,解决API调用的复杂问题。以预订航班智能体为例,传统自定义代码实现API调用存在扩展性差、易出错等问题,而扩展通过示例教导智能体使用API端点及所需参数,智能体运行时可根据示例动态选择合适扩展。谷歌提供的代码解释器扩展,能依据自然语言描述生成并运行Python代码,展示了扩展的强大功能。

  2. 函数:在智能体中,函数类似软件工程中的定义,由模型决定使用时机和参数。与扩展不同,函数由客户端执行,模型输出函数及参数但不直接进行API调用。例如,在航班预订场景中,函数可将API调用逻辑卸载到客户端,适用于API调用受限、需额外数据转换或开发迭代等场景。在旅行礼宾智能体应用中,函数可使模型输出结构化数据,方便客户端进一步处理。

  3. 数据存储:语言模型知识固定,数据存储解决这一局限,允许开发人员以原始格式提供额外数据,将其转换为向量数据库嵌入,辅助智能体决策。在检索增强生成(RAG)应用中,数据存储使智能体能够访问网站内容、结构化和非结构化数据,通过向量搜索匹配用户查询与数据存储,为智能体提供实时、相关信息。

六、提升模型性能的针对性学习方法

在生产环境中,模型正确选择工具对智能体性能至关重要。以下几种针对性学习方法可助力模型获取特定知识:

  1. 上下文学习:推理时为模型提供提示、工具和少量示例,使其能“即时学习”任务执行方式。如厨师依据顾客食谱、食材和示例菜肴即兴创作,类比智能体在上下文信息辅助下处理任务。

  2. 基于检索的上下文学习:从外部存储器检索相关信息、工具和示例填充模型提示。类似厨师从充足食材和烹饪书中选择资源制作菜肴,智能体通过这种方式利用外部数据存储提升决策能力,如Vefiex AI扩展的“示例存储”和RAG架构中的数据存储。

  3. 基于微调的学习:使用包含特定示例的更大数据集预训练模型,帮助模型在接收用户查询前理解工具应用时机和方式。如同厨师学习新菜肴提升专业技能,基于微调的学习可使智能体在特定领域表现更出色。

这些方法在速度、成本和延迟方面各有优劣,结合使用可构建更稳健、适应性强的智能体解决方案。

七、基于LangChain快速构建智能体

利用LangChain和LangGraph库可快速构建智能体原型。以回答多阶段查询的智能体为例,使用gemini - 1.5 - flash - 001模型及SerpAPI(谷歌搜索)和谷歌地点API工具。通过定义搜索和地点查询工具函数,创建基于ReAct框架的智能体,输入用户查询后,智能体依次调用工具获取信息并回答问题,展示了模型、编排和工具协同工作的能力。

八、配备Vefiex AI智能体的生产应用

谷歌Vefiex AI平台为构建生产级智能体应用提供便捷环境,涵盖用户界面、评估框架和持续改进机制等要素。开发人员通过自然语言界面定义智能体关键要素,利用平台开发工具测试、评估和优化智能体性能,专注于智能体构建与完善,平台负责基础设施、部署和维护工作。基于该平台构建的智能体架构示例,整合了Vefiex Agent Builder、Extensions、Function Calling和Example Store等功能,为生产就绪应用提供全面支持。

九、总结与展望

本白皮书阐述了生成式AI智能体的基本构建块、架构实现和应用方式。智能体扩展了语言模型功能,通过编排层和工具实现复杂任务处理,未来发展前景广阔。随着工具和推理能力提升,智能体将解决更复杂问题,“agent链”和“agent专长混合”方法有望在多行业取得显著成果。构建智能体架构需迭代优化,充分发挥各组件优势,以创造更具影响力的应用,推动AI技术实现更大价值,开启智能应用新篇章,为各行业带来创新变革机遇。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值