聊聊ChatGLM-6B源码分析(二)

基于ChatGLM-6B第一版,要注意还有ChatGLM2-6B以及ChatGLM3-6B

ChatGLMPreTrainedModel

官方的描述是 处理权重初始化的抽象类,以及下载和加载预训练模型的接口。

掩码

如下是GLM模型的掩码结构,在此抽象类中,由get_masks函数处理
image.png


def get_masks(input_ids, device):
    batch_size, seq_length = input_ids.shape
    # bos_token_id所在的位置
    context_lengths = [seq.tolist().index(130004) for seq in input_ids]
    attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
    # 填充下三角全为1,上三角全为0
    attention_mask.tril_()
    # 遍历每个序列直到bos_token_id出现的位置,更新掩码,改为双向注意力
    for i, context_length in enumerate(context_lengths):
        attention_mask[i, :, :context_length] = 1
    # 扩充维度
    attention_mask.unsqueeze_(1)
    # 变更为True和False的维度形式
    attention_mask = (attention_mask < 0.5).bool()

    return attention_mask

位置编码

GLM模型中位置编码是2D的,有两层的位置表示,分别是序列的位置表示和mask block的位置表示。由get_position_ids函数处理。position_ids对应GLM论文中的postion 1,block_position_ids对应GLM论文中的position 2。

def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):
    """
    input_ids: [batch_size, seq_length]
    mask_positions: [batch_size],由于GLM系列中会使用[Mask]或[gMask]标志,mask_positions就是指这些标注的具体位置
    """
    batch_size, seq_length = input_ids.shape
    if use_gmasks is None:
        use_gmasks = [False] * batch_size
    # context_lengths:未被padding前,batch中各个样本的长度
    context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
    # 2维位置编码
    if self.position_encoding_2d:
        # [0,1,2,...,seq_length-1]
        position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
        # 将原始输入后所有位置的postion id都设置为[Mask]或者[gMask]的位置id
        for i, context_length in enumerate(context_lengths):
            position_ids[i, context_length:] = mask_positions[i]
        # 原始输入的位置编码全部设置为0,待生成的位置添加顺序的位置id
        # 例如:[0,0,0,0,1,2,3,4,5]
        block_position_ids = [torch.cat((
            torch.zeros(context_length, dtype=torch.long, device=device),
            torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
        )) for context_length in context_lengths]
        block_position_ids = torch.stack(block_position_ids, dim=0)
        # 将postion_ids和block_position_ids堆叠在一起,用于后续的参数传入;
        # 在注意力层中,还有将这个position_ids拆分为两部分: position_ids, block_position_ids
        position_ids = torch.stack((position_ids, block_position_ids), dim=1)
    else:
        position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
        for i, context_length in enumerate(context_lengths):
            if not use_gmasks[i]:
                position_ids[i, context_length:] = mask_positions[i]

    return position_ids


ChatGLMModel

该Model通过组装各个组件构造最终的模型结构。模型的微调处理也是在这里进行。

class ChatGLMModel(ChatGLMPreTrainedModel):
    """
    The model can behave as an encoder (with only self-attention) as well
    as a decoder, in which case a layer of cross-attention is added between
    the self-attention layers, following the architecture described in [Attention is
    all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
    Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
    To behave as an decoder the model needs to be initialized with the
    `is_decoder` argument of the configuration set to `True`.
    To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
    argument and `add_cross_attention` set to `True`; an
    `encoder_hidden_states` is then expected as an input to the forward pass.
    """

    def __init__(self, config: ChatGLMConfig, empty_init=True):
        super().__init__(config)
        if empty_init:
            init_method = skip_init
        else:
            init_method = default_init
        # recording parameters
        self.max_sequence_length = config.max_sequence_length
        self.hidden_size = config.hidden_size
        self.params_dtype = torch.half
        self.num_attention_heads = config.num_attention_heads
        self.vocab_size = config.vocab_size
        self.num_layers = config.num_layers
        self.layernorm_epsilon = config.layernorm_epsilon
        self.inner_hidden_size = config.inner_hidden_size
        self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
        self.position_encoding_2d = config.position_encoding_2d
        self.pre_seq_len = config.pre_seq_len
        self.prefix_projection = config.prefix_projection

        self.word_embeddings = init_method(
            torch.nn.Embedding,
            num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
            dtype=self.params_dtype
        )
        self.gradient_checkpointing = False

        # 返回transform结构的GLMBlock
        def get_layer(layer_id):
            return GLMBlock(
                self.hidden_size,
                self.num_attention_heads,
                self.layernorm_epsilon,
                layer_id,
                inner_hidden_size=self.inner_hidden_size,
                hidden_size_per_attention_head=self.hidden_size_per_attention_head,
                layernorm=LayerNorm,
                use_bias=True,
                params_dtype=self.params_dtype,
                position_encoding_2d=self.position_encoding_2d,
                empty_init=empty_init
            )
        # 堆叠GLMBlock,参数就是config.json中指定的num_layers,默认堆叠28层
        self.layers = torch.nn.ModuleList(
            [get_layer(layer_id) for layer_id in range(self.num_layers)]
        )

        # 输出之前做最后一次的层归一化
        self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)

        # 处理微调,pre_seq_len参数来自微调脚本train.sh的PRE_SEQ_LEN参数
        if self.pre_seq_len is not None:
            for param in self.parameters():
                param.requires_grad = False
            self.prefix_tokens = torch.arange(self.pre_seq_len).long()
            self.prefix_encoder = PrefixEncoder(config)
            self.dropout = torch.nn.Dropout(0.1)

            # total_params = sum(p.numel() for p in self.parameters())
            # trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
            # print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))

    def get_input_embeddings(self):
        return self.word_embeddings

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.word_embeddings = new_embeddings

    def get_prompt(self, batch_size, device, dtype=torch.half):
        prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
        past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
        past_key_values = past_key_values.view(
            batch_size,
            self.pre_seq_len,
            self.num_layers * 2,
            self.num_attention_heads,
            self.hidden_size // self.num_attention_heads
        )
        # seq_len, b, nh, hidden_size
        past_key_values = self.dropout(past_key_values)
        past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
        # past_key_values = [(v[0], v[1]) for v in past_key_values]
        return past_key_values

    @add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPastAndCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
            self,
            input_ids: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
            inputs_embeds: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape[:2]
        elif inputs_embeds is not None:
            batch_size, seq_length = inputs_embeds.shape[:2]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        # embedding层
        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        if past_key_values is None:
            if self.pre_seq_len is not None:
                past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,
                                                  dtype=inputs_embeds.dtype)
            else:
                past_key_values = tuple([None] * len(self.layers))

            # 获得注意力mask
            if attention_mask is None:
                attention_mask = self.get_masks(
                    input_ids,
                    device=input_ids.device
                )


            # 处理位置编码
            if position_ids is None:
                MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
                seqs = input_ids.tolist()
                # 记录input_ids中是否使用了mask以及mask的位置
                # mask_positions记录每个样本中mask的位置
                # use_gmasks记录是否使用了gMask
                mask_positions, use_gmasks = [], []
                for seq in seqs:
                    mask_token = gMASK if gMASK in seq else MASK
                    use_gmask = mask_token == gMASK
                    mask_positions.append(seq.index(mask_token))
                    use_gmasks.append(use_gmask)
                # 获取位置编码
                position_ids = self.get_position_ids(
                    input_ids,
                    mask_positions=mask_positions,
                    device=input_ids.device,
                    use_gmasks=use_gmasks
                )

        # 微调的处理
        if self.pre_seq_len is not None and attention_mask is not None:
            prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(
                attention_mask.device)
            prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)

        # [seq_len, batch, hidden_size]
        hidden_states = inputs_embeds.transpose(0, 1)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        if attention_mask is None:
            attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
        else:
            attention_mask = attention_mask.to(hidden_states.device)

        # 遍历堆叠的transform层,并开始执行
        for i, layer in enumerate(self.layers):

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
            layer_past = past_key_values[i]

            if self.gradient_checkpointing and self.training:
                layer_ret = torch.utils.checkpoint.checkpoint(
                    layer,
                    hidden_states,
                    position_ids,
                    attention_mask,
                    torch.tensor(i),
                    layer_past,
                    use_cache,
                    output_attentions
                )
            else:
                layer_ret = layer(
                    hidden_states,
                    position_ids=position_ids,
                    attention_mask=attention_mask,
                    layer_id=torch.tensor(i),
                    layer_past=layer_past,
                    use_cache=use_cache,
                    output_attentions=output_attentions
                )

            hidden_states = layer_ret[0]

            if use_cache:
                presents = presents + (layer_ret[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)

        # Final layer norm.
        hidden_states = self.final_layernorm(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


其完整结构如下所示。相比较传统的Transformer模型结构,ChatGLM模型中,将GLMBlock统一了两者,只需要增加is_decoder=true即可切换为decoder行为,在ChatGLMModel源码的注释中就已经写清楚了,默认是encoder;GLU层对应Transformer模型的FFN层。

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

  • 30
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ChatGLM-6B源码是基于GLM的2D位置编码实现的。该位置编码的详细原理可以在原文《GLM: General Language Model Pretraining with Autoregressive Blank Infilling》中找到。在GitHub上,有一个微调ChatGLM-6B项目的代码库,作者是mymusise。该项目使用Stanford Alpaca的52K数据集,并通过LoRA(低秩适应)的方式进行微调。在评测时,使用中文Rouge分数和BLEU-4指标,并将生成的结果保存在"./output/adgen-chatglm-6b-pt-8-1e-2/generated_predictions.txt"文件中。 以上是关于ChatGLM-6B源码的一些解读。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [ChatGLM-6B模型结构组件源码阅读](https://blog.csdn.net/yjh_SE007/article/details/130728164)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [ChatGLM-6B的基座/部署/微调/实现:从GLM6B的LoRA/P-Tuning微调、及6B源码解读](https://blog.csdn.net/v_JULY_v/article/details/129880836)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值