AI产品经理,薪资飙升背后的供需矛盾

前言

近年来,随着人工智能(AI)技术的快速发展,AI产品经理这一职位的需求量也一路暴涨,薪资水平更是水涨船高。根据美国招聘社交媒体Glassdoor的数据,AI产品经理的年收入高达125万元,是普通产品经理年收入的1.43倍,更是项目经理年收入的2.14倍。在中国,大厂AI产品经理的月收入也达到了3到7万元左右。尽管如此,有经验的AI产品经理仍然供不应求。那么,这种情况是否会持续下去呢?

在这里插入图片描述

AI产品经理薪资上涨的原因

  1. 复合型人才稀缺:产品经理本身就是一个综合性很强的岗位,需要掌握产品开发管理的知识,并具备一定的业务洞察力。而对于AI产品经理而言,除了这些基本要求外,还需要有一定的AI技术知识,以便在技术本身还在发展的情况下做出正确的技术方向判断。这种复合型人才的稀缺性导致了AI产品经理的薪资水平居高不下。
  2. 市场需求旺盛:随着AI技术的广泛应用,各行各业都在积极探索AI技术的应用场景,这导致了市场上对AI产品经理的需求量大幅增加。即使是已经退休的业界大佬也被AI的潜力所吸引,决定复出,广发英雄帖招兵买马。在这种背景下,供需矛盾决定了AI产品经理的薪资短期内不会降低。

供需矛盾决定薪资水平

AI产品经理的薪资水平之所以能够维持在高位,主要是因为市场上的供需矛盾。一方面,好的产品经理总是稀缺的,更何况是具备AI技术背景的产品经理。另一方面,随着AI技术的普及,越来越多的企业投入到AI项目中,这进一步加剧了对AI产品经理的需求。在这种情况下,供需关系决定了AI产品经理的薪资水平短期内不太可能下降。

AI产品经理还能入吗?

对于那些希望进入AI领域的专业人士来说,这是一个充满机遇的时代。通过不断学习和实践,这些人才可以成为连接技术与应用场景的桥梁,为社会创造更大的价值。在未来相当长的一段时间内,AI产品经理仍将是市场上炙手可热的职业之一。

尽管市面上已经存在大量关于人工智能技术的资料,但专门针对如何成为和做好AI产品经理的系统化教学体系却寥寥无几。能够提供从产品理念到实施细节,乃至行业大牛全程指导的课程更是罕见。这不仅加大了产品经理学习的难度,也限制了他们在这个领域的成长速度。

因此特意给大家准备了一份涵盖了AI大模型入门学习思维导图、AI产品经理入门到进阶学习资料、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料。这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。

适合哪些同学来学习?
  • 有转行意向的0基础职场人:不满现状,想转行产品经理,不知道从哪里下手;
  • 刚入行产品的产品新人:没人教没人带,缺乏方法论,想完善自己的产品知识体系;
  • 想往产品方向发展的学生:想以产品经理作为职业生涯的开始,却不知道怎么学。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、大模型的学习路线

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

二、产品经理学习资料

在这里插入图片描述

三、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

四、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

五、AI大模型商业化落地方案

img

六、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

<think>好的,我现在需要帮助用户寻找关于单相桥式单极性PWM逆变电路仿真的资料或教程,特别是使用Matlab Simulink或Proteus的实现方法。首先,我得先理解用户的问题。用户可能在进行电力电子相关的项目或学习,需要搭建仿真电路来验证理论或设计。用户提到了两个引用,一个是关于SPWM逆变电路的参数计算,另一个是51单片机生成SPWM信号的方法,但用户现在更关注的是仿真工具的具体实现步骤。 首先,我需要回忆单相桥式单极性逆变电路的基本结构。这种电路通常由四个开关器件(如IGBT或MOSFET)组成桥式结构,单极性调制意味着在输出端同一半周期内,电压的极性不变,通过PWM控制开关的通断来生成正弦波。双极性调制相比,单极性的谐波特性可能更好,但控制方式略有不同。 接下来,用户需要Matlab Simulink或Proteus的仿真方法。Matlab Simulink在电力电子仿真方面比较常用,而Proteus更多用于单片机控制和电路级仿真。但用户之前提到的引用中有使用Simulink生成SPWM信号的例子,所以可能需要详细说明Simulink的步骤。 根据引用[^1],单相桥式SPWM逆变电路的参数设置是关键,比如输入电压330V,输出220V有效值,频率50Hz,载波频率5kHz。调制波的幅值计算为约0.9428V,这部分可能需要在仿真中正确设置调制波和载波的参数。 然后,我需要考虑如何在Simulink中搭建这样的电路。通常步骤包括:搭建单相全桥电路,使用PWM发生器模块,设置调制波和载波,连接负载和测量设备。对于单极性调制,可能需要使用两个反相的调制波,或者通过逻辑控制使得同一桥臂的上下开关不同时导通,确保单极性输出。 对于Proteus,虽然它支持电路仿真,但电力电子方面的模型可能不如Simulink全面。用户可能需要使用微控制器(如51单片机)生成SPWM信号,然后驱动桥式电路。引用[^2]中提到用户尝试用51单片机生成SPWM,这可能涉及到定时器和中断的使用,来调整占空比以形成正弦波。 现在,我需要将步骤分解,确保每个部分都清晰。可能需要注意以下几点: 1. **Simulink仿真步骤**: - 创建新模型,添加电源、全桥电路(IGBT或MOSFET)、负载(如电阻或LC滤波器)、测量元件(电压表、电流表、示波器)。 - 生成SPWM信号:使用Sine Wave模块作为调制波(50Hz,0.9428V幅值),Carrier Wave(三角波,5kHz,1V幅值),通过比较生成PWM信号。 - 分配PWM信号到桥臂,注意单极性调制需要互补的信号,可能使用NOT门来生成互补PWM,或者使用两个比较器,一个用正弦波,另一个用反向的正弦波。 - 设置解算器和仿真参数,如步长时间,仿真时长等。 - 分析输出波形,检查谐波含量,调整调制参数。 2. **Proteus仿真步骤**: - 可能较为复杂,因为需要单片机生成SPWM。需要设计单片机代码,使用定时器生成PWM信号,调整占空比按照正弦规律变化。 - 在Proteus中搭建桥式电路,连接MOSFET/IGBT,驱动电路(如IR2110),以及负载。 - 编写51单片机代码,实现单极性SPWM,可能需要查表法或实时计算正弦值,调整PWM占空比。 - 运行仿真,观察输出波形,可能需要滤波器(LC)来平滑输出。 此外,用户可能需要参考资料或教程,可能需要推荐一些书籍、在线教程或Simulink/Proteus的官方文档。同时,注意参数计算的正确性,比如调制比,确保输出电压符合要求。 在用户提供的引用中,引用详细说明了调制波幅值的计算,这是关键步骤,需要确保仿真中调制波幅值设置正确。引用涉及到单片机实现,但用户现在可能更关注仿真而非实际硬件实现,所以可能需要将重点放在Simulink上。 可能遇到的问题包括:仿真中出现高谐波失真、开关频率设置不当导致发热、死区时间未设置导致桥臂直通等。因此,在教程中需要提醒用户注意这些问题,并可能提供调试建议。 最后,生成相关问题,需要考虑用户可能的后续问题,如参数优化、谐波分析、闭环控制实现等。</think>### 单相桥式单极性PWM逆变电路仿真实现方法 #### **一、Matlab Simulink实现步骤** 1. **电路搭建** - 在Simulink库中添加以下模块: - 直流电源(330V) - 单相全桥电路(使用4个IGBT/MOSFET,搭配反并联二极管) - 负载(电阻或LC滤波器,例如$L=10\text{mH}$,$C=100\mu\text{F}$) - 电压/电流测量模块 - 示波器(观察输出电压波形) 2. **SPWM信号生成** - **调制波**:正弦波模块(频率50Hz,幅值$0.9428\text{V}$) - **载波**:三角波模块(频率5kHz,幅值1V) - **比较器**:通过Relay模块或Compare to Zero模块生成PWM信号 - **信号分配**:单极性调制需将两路互补PWM信号分别分配给桥臂的上下开关(例如Q1-Q3Q2-Q4交替导通)。 3. **参数设置** - 解算器选择`ode23tb`,步长设为$1e-6$秒以保证开关细节 - 仿真时间设为$0.1$秒以观察稳定波形 4. **仿真结果分析** - 输出波形应为50Hz正弦波,有效值接近220V - 使用FFT工具分析谐波含量(重点关注$5\text{kHz}\pm n\cdot50\text{Hz}$分量) #### **二、Proteus实现步骤** 1. **硬件电路搭建** - 添加单相全桥电路(MOSFET型号如IRF540N) - 驱动芯片(如IR2110)连接单片机PWM输出 - 负载端添加LC滤波器(参数同Simulink) 2. **单片机SPWM生成** - 使用51单片机定时器生成PWM波(频率5kHz) - 通过查表法修改占空比,实现正弦调制(示例代码片段): ```c unsigned int sin_table[50] = {127, 152, 176, ...}; // 预计算正弦值 void timer_isr() { PWM_duty = sin_table[index++ % 50]; // 每周期50个点 } ``` 3. **仿真调试** - 观察MOSFET驱动信号是否互补 - 检查输出电压是否平滑(未滤波时应有明显PWM脉冲) #### **三、关键参数验证** - **调制比计算**: $$ M = \frac{A_m}{A_c} = \frac{0.9428}{1} \approx 0.9428 $$ 输出电压验证: $$ V_{out} = M \cdot \frac{V_{dc}}{2} = 0.9428 \cdot \frac{330}{2} \approx 155.6V_{peak} \approx 220V_{rms} $$ #### **四、常见问题调试** 1. **输出电压畸变** - 检查调制波频率是否为50Hz - 增大LC滤波器截止频率:$f_c = \frac{1}{2\pi\sqrt{LC}} \ll 5\text{kHz}$ 2. **桥臂直通** - 添加死区时间(如1μs) - 在Simulink中使用`Dead Time`模块,Proteus中通过代码延迟
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值