国内外 30 个热门大模型的架构的图文解析汇总_国外大模型

在近两年内,有关 LLM 的研究进展很快,每天几乎都有新的语言模型发布(隐藏的 GPT-5,Llama3,Qwen1.5,Mixtral 8x22B 和 Claude 3 等等等等),它们的性能和效果似乎每天都在持续提升。

然而,令人震惊的是,大多数现代 LLM 所使用的架构与最初的 GPT 模型非常相似。从模型架构角度出发,LLM 的一个关键组成部分一直保持不变,那就是 Transformer 架构的 Decoder。所有人或机构几乎都只是在将模型做得更大,对结构稍作修改,使用更大规模和更高质量的数据集,并采用更加先进的训练(和对齐)方法训练模型。

因此,深入了解 LLM 的内部结构对于研究人员和技术开发者来说是至关重要的。这不仅有助于我们更好地理解模型的性能和局限性,还能够指导我们如何更有效地设计和优化未来的模型。接下来,我将会简要地概述 LLM 常用的架构配置,然后针对国内外 30 个热门大模型的架构,进行详细的图文分析,以便大家对大模型有更深刻的理解。

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

架构配置

Transformer

架构类型

大型语言模型(LLMs)主要分为自回归模型、自编码模型和序列到序列模型这三种类型。这些模型几乎普遍采用 Transformer 架构,而传统的 RNN 架构则较少使用。基于 Transformer 架构的 LLMs,根据其设计特点,主要可以分为三类:仅包含编码器(Encoder-only)的模型、仅包含解码器(Decoder-only)的模型,以及同时包含编码器和解码器(Encoder-Decoder)的模型。

1. RNN

2. 基于 Transformer 的 GPT,BERT 和 Transformer XL

混合专家模型 MoE

MoE(Mixture-of-Experts)是一种神经网络架构,它通过路由机制(Router)将输入数据动态地分配给多个专家(Expert)网络中的一组。这种架构允许模型根据输入数据的特性选择不同的专家来处理,从而提高了模型的表达能力和效率。

1. 稀疏 MoE

2. 细粒度 MoE

注意力机制

注意力机制是一种在大语言模型中模拟人类注意力的技术,它通过动态调整输入数据的权重,使模型能够集中处理信息中最关键的部分。

1. 多头注意力

2. 稀疏注意力

3. 滑动窗口注意力

1MHA,GQA 和 MQA

位置编码

在 LLM 中,位置编码是一种将序列中 Token 的位置信息编码为模型可以理解和利用的方式的技术。

1. 基于正弦函数和余弦函数的固定位置编码

2. 可学习的(learnable)位置编码

3. ALiBi 位置编码

4. RoPE 位置编码

归一化

在 LLM 中,归一化是一种数据处理技术,通过将输入特征缩放到统一的尺度上,来提高模型的泛化能力和训练效率。

  1. Pre-Norm 和 Post-Norm

2. Pre-Norm

Sublayer 表示自注意力层或前馈神经网络层。

3. Post-Norm

4. LayerNorm

5. RMSNorm

RMSNorm 省略了 LayerNorm 中平均值μ的计算,只基于均方根进行缩放。

激活函数

激活函数是神经网络中的一种函数,用于对输入信号进行非线性变换,增加网络的表达能力。激活函数的选择对神经网络的性能和训练速度有很大的影响。

1. GeLU 和 SiLU

2. GLU( Gated Linear Units)

3. GeGLU 和 SwiGLU

详细架构

BERT

BERT 模型建立在 Transformer 的 Encoder 的基础上。

1. 模型架构

BertModel(     (embeddings): BertEmbeddings(       (word_embeddings): Embedding(28996, 768, padding_idx=0)       (position_embeddings): Embedding(512, 768)       (token_type_embeddings): Embedding(2, 768)       (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)       (dropout): Dropout(p=0.1, inplace=False)     )     (encoder): BertEncoder(       (layer): ModuleList(         (0-11): 12 x BertLayer(           (attention): BertAttention(             (self): BertSelfAttention(               (query): Linear(in_features=768, out_features=768, bias=True)               (key): Linear(in_features=768, out_features=768, bias=True)               (value): Linear(in_features=768, out_features=768, bias=True)               (dropout): Dropout(p=0.1, inplace=False)             )             (output): BertSelfOutput(               (dense): Linear(in_features=768, out_features=768, bias=True)               (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)               (dropout): Dropout(p=0.1, inplace=False)             )           )           (intermediate): BertIntermediate(             (dense): Linear(in_features=768, out_features=3072, bias=True)             (intermediate_act_fn): GELUActivation()           )           (output): BertOutput(             (dense): Linear(in_features=3072, out_features=768, bias=True)             (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)             (dropout): Dropout(p=0.1, inplace=False)           )         )       )     )     (pooler): BertPooler(       (dense): Linear(in_features=768, out_features=768, bias=True)       (activation): Tanh()     )   )

2. 图示

ChatGLM, ChatGLM2, ChatGLM3, GLM

GLM 是一个基于自动回归式空白填充预训练的通用语言模型。ChatGLM2 和 ChatGLM3 对 ChatGLM 的主要改进在于使用了 MAQ 注意力机制,RMSNorm 归一化方法和 SwiGLU 激活函数。下面仅给出 ChatGLM2 的模型架构。

1. 模型架构

ChatGLMForConditionalGeneration(     (transformer): ChatGLMModel(       (embedding): Embedding(         (word_embeddings): Embedding(65024, 4096)       )       (rotary_pos_emb): RotaryEmbedding()       (encoder): GLMTransformer(         (layers): ModuleList(           (0-27): 28 x GLMBlock(             (input_layernorm): RMSNorm()             (self_attention): SelfAttention(               (query_key_value): Linear(in_features=4096, out_features=4608, bias=True)               (core_attention): CoreAttention(                 (attention_dropout): Dropout(p=0.0, inplace=False)               )               (dense): Linear(in_features=4096, out_features=4096, bias=False)             )             (post_attention_layernorm): RMSNorm()             (mlp): MLP(               (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False)               (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)             )           )         )         (final_layernorm): RMSNorm()       )       (output_layer): Linear(in_features=4096, out_features=65024, bias=False)     )   )

2. 图示

ChatRWKV

RWKV 是一种基于 RNN 架构,并结合 Transformer 的优势的语言模型。

1. 模型架构图示

Command-R

Command-R 基于 Transformer 的 Decoder 进行创新和改进,具备 RAG(Retrieval Augmented Generation)的功能特性,部分模型使用了 GQA 技术。

1. 模型结构

CohereForCausalLM(                       (model): CohereModel(                         (embed_tokens): Embedding(256000, 8192, padding_idx=0)                         (layers): ModuleList(                           (0-39): 40 x CohereDecoderLayer(                             (self_attn): CohereAttention(                               (q_proj): Linear(in_features=8192, out_features=8192, bias=False)                               (k_proj): Linear(in_features=8192, out_features=8192, bias=False)                               (v_proj): Linear(in_features=8192, out_features=8192, bias=False)                               (o_proj): Linear(in_features=8192, out_features=8192, bias=False)                               (rotary_emb): CohereRotaryEmbedding()                             )                             (mlp): CohereMLP(                               (gate_proj): Linear(in_features=8192, out_features=22528, bias=False)                               (up_proj): Linear(in_features=8192, out_features=22528, bias=False)                               (down_proj): Linear(in_features=22528, out_features=8192, bias=False)                               (act_fn): SiLU()                             )                             (input_layernorm): CohereLayerNorm()                           )                         )                         (norm): CohereLayerNorm()                       )                       (lm_head): Linear(in_features=8192, out_features=256000, bias=False)                     )   

2. 图示

GPT

GPT 模型建立在 Transformer 的 Decoder 的基础上。

1. 模型架构

`OpenAIGPTLMHeadModel(                       (transformer): OpenAIGPTModel(                         (tokens_embed): Embedding(40478, 768)                         (positions_embed): Embedding(512, 768)                         (drop): Dropout(p=0.1, inplace=False)                         (h): ModuleList(                           (0-11): 12 x Block(                             (attn): Attention(                               (c_attn): Conv1D()                               (c_proj): Conv1D()                               (attn_dropout): Dropout(p=0.1, inplace=False)                               (resid_dropout): Dropout(p=0.1, inplace=False)                             )                             (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)                             (mlp): MLP(                               (c_fc): Conv1D()                               (c_proj): Conv1D()                               (act): NewGELUActivation()                               (dropout): Dropout(p=0.1, inplace=False)                             )                             (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)                           )                         )                       )                       (lm_head): Linear(in_features=768, out_features=40478, bias=False)                     )`        

2. 图示

GPT2, GPT3, Falcon

GPT3 与 GPT2 在模型架构上的差别在于前者使用了稀疏注意力模式的注意力机制,而 Falcon 在 GPT3 上进行的最大变动在于前者使用了 RoPE 和 MQA,这里仅提供 GPT2 的模型架构,详情请查看对应模型的具体实现。

1. 模型架构

GPT2LMHeadModel(                       (transformer): GPT2Model(                         (wte): Embedding(50257, 768)                         (wpe): Embedding(1024, 768)                         (drop): Dropout(p=0.1, inplace=False)                         (h): ModuleList(                           (0-11): 12 x GPT2Block(                             (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)                             (attn): GPT2Attention(                               (c_attn): Conv1D()                               (c_proj): Conv1D()                               (attn_dropout): Dropout(p=0.1, inplace=False)                               (resid_dropout): Dropout(p=0.1, inplace=False)                             )                             (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)                             (mlp): GPT2MLP(                               (c_fc): Conv1D()                               (c_proj): Conv1D()                               (act): NewGELUActivation()                               (dropout): Dropout(p=0.1, inplace=False)                             )                           )                         )                         (ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)                       )                       (lm_head): Linear(in_features=768, out_features=50257, bias=False)                     )   

2. 图示

Gemma

Gemma 在 Transformer 的 Decoder 上进行创新和改进,使用了 MQA 技术。

1. 模型架构

`GemmaForCausalLM(                       (model): GemmaModel(                         (embed_tokens): Embedding(256000, 2048, padding_idx=0)                         (layers): ModuleList(                           (0-17): 18 x GemmaDecoderLayer(                             (self_attn): GemmaSdpaAttention(                               (q_proj): Linear(in_features=2048, out_features=2048, bias=False)                               (k_proj): Linear(in_features=2048, out_features=256, bias=False)                               (v_proj): Linear(in_features=2048, out_features=256, bias=False)                               (o_proj): Linear(in_features=2048, out_features=2048, bias=False)                               (rotary_emb): GemmaRotaryEmbedding()                             )                             (mlp): GemmaMLP(                               (gate_proj): Linear(in_features=2048, out_features=16384, bias=False)                               (up_proj): Linear(in_features=2048, out_features=16384, bias=False)                               (down_proj): Linear(in_features=16384, out_features=2048, bias=False)                               (act_fn): PytorchGELUTanh()                             )                             (input_layernorm): GemmaRMSNorm()                             (post_attention_layernorm): GemmaRMSNorm()                           )                         )                         (norm): GemmaRMSNorm()                       )                       (lm_head): Linear(in_features=2048, out_features=256000, bias=False)                     )`        

2. 图示

Grok-1

Grok-1 在 Transformer 的 Decoder 上进行创新和改进,使用了 GQA , MoE 和 Sandwish Normalization 等技术。

1. 模型架构

`Grok1ModelForCausalLM(                       (model): Grok1Model(                         (embed_tokens): Embedding(131072, 6144, padding_idx=0)                         (layers): ModuleList(                           (0-63): 64 x DecoderLayer(                             (attn): MultiHeadAttention(                               (q_proj): Linear(in_features=6144, out_features=6144, bias=False)                               (k_proj): Linear(in_features=6144, out_features=6144, bias=False)                               (v_proj): Linear(in_features=6144, out_features=6144, bias=False)                               (o_proj): Linear(in_features=6144, out_features=6144, bias=False)                               (rotary_emb): RotaryEmbedding()                             )                             (moe_block): MoeBlock(                               (gate): Linear(in_features=6144, out_features=8, bias=False)                               (experts): ModuleList(                                 (0-7): 8 x MoeMLP(                                   (linear_v): Linear(in_features=6144, out_features=32768, bias=False)                                   (linear_1): Linear(in_features=32768, out_features=6144, bias=False)                                   (linear): Linear(in_features=6144, out_features=32768, bias=False)                                   (act_fn): GELU(approximate='none')                                 )                               )                             )                             (pre_attn_norm): RMSNorm()                             (post_attn_norm): RMSNorm()                             (pre_moe_norm): RMSNorm()                             (post_moe_norm): RMSNorm()                           )                         )                         (norm): RMSNorm()                       )                       (lm_head): Linear(in_features=6144, out_features=131072, bias=False)                     )`        

2. 图示

LLama, LLama2, LLama3, Baichuan, Baichuan2, DeepSeek, DeepSeek-Coder, Intern, Intern2, OLMo,Phi-3, Skywork, Yi

Llama 基于 Transformer 的 Decoder 进行创新和改进,并吸收了 GPT3 和 PaLM 等最新研究的优点。

从 Baichuan2,Intern2,DeepSeek,OLMo,Phi-3,Skywork 和 Yi 的论文或技术报告了解到,其采用了和 LLama 相似的模型结构设计,但注意,实际上 Baichuan2,Intern2,DeepSeek,OLMo,Phi-3,Skywork 和 Yi 与 Llama2 并不完全一样,在注意力机制,位置编码,归一化,前馈神经网络的处理上可能存在着细微的差别,详情请查看对应模型的具体实现。而由于 LLama,LLama2 和 LLama3 的模型结构变化不大,这里给出 LLama2 的模型结构。

1. 模型架构

`LlamaForCausalLM(                       (model): LlamaModel(                         (embed_tokens): Embedding(32000, 4096)                         (layers): ModuleList(                           (0-31): 32 x LlamaDecoderLayer(                             (self_attn): LlamaAttention(                               (q_proj): Linear(in_features=4096, out_features=4096, bias=False)                               (k_proj): Linear(in_features=4096, out_features=4096, bias=False)                               (v_proj): Linear(in_features=4096, out_features=4096, bias=False)                               (o_proj): Linear(in_features=4096, out_features=4096, bias=False)                               (rotary_emb): LlamaRotaryEmbedding()                             )                             (mlp): LlamaMLP(                               (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)                               (up_proj): Linear(in_features=4096, out_features=11008, bias=False)                               (down_proj): Linear(in_features=11008, out_features=4096, bias=False)                               (act_fn): SiLUActivation()                             )                             (input_layernorm): LlamaRMSNorm()                             (post_attention_layernorm): LlamaRMSNorm()                           )                         )                         (norm): LlamaRMSNorm()                       )                       (lm_head): Linear(in_features=4096, out_features=32000, bias=False)                     )`        

2. 图示

Mistral

Mistral 基于 Transformer 的 Decoder 进行创新和改进,使用了 GQA 和 SWA 等技术,部分模型采用了 MoE 架构。

1. 模型架构

MistralForCausalLM(                       (model): MistralModel(                         (embed_tokens): Embedding(32000, 4096)                         (layers): ModuleList(                           (0-31): 32 x MistralDecoderLayer(                             (self_attn): MistralAttention(                               (q_proj): Linear(in_features=4096, out_features=4096, bias=False)                               (k_proj): Linear(in_features=4096, out_features=1024, bias=False)                               (v_proj): Linear(in_features=4096, out_features=1024, bias=False)                               (o_proj): Linear(in_features=4096, out_features=4096, bias=False)                               (rotary_emb): MistralRotaryEmbedding()                             )                             (mlp): MistralMLP(                               (gate_proj): Linear(in_features=4096, out_features=14336, bias=False)                               (up_proj): Linear(in_features=4096, out_features=14336, bias=False)                               (down_proj): Linear(in_features=14336, out_features=4096, bias=False)                               (act_fn): SiLU()                             )                             (input_layernorm): MistralRMSNorm()                             (post_attention_layernorm): MistralRMSNorm()                           )                         )                         (norm): MistralRMSNorm()                       )                       (lm_head): Linear(in_features=4096, out_features=32000, bias=False)                     )   

2. 图示

OpenELM

OpenELM 基于 Transformer 的 Decoder 进行创新和改进,使用了 GQA 和 Layer-wise scaling 等技术。

1. 模型架构

`OpenELMForCausalLM(                       (transformer): OpenELMModel(                         (token_embeddings): Embedding(32000, 1280)                         (layers): ModuleList(                           (0): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=12, key_heads=3, value_heads=3                               (qkv_proj): Linear(in_features=1280, out_features=1152, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=768, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=1536, bias=False)                               (proj_2): Linear(in_features=768, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (1): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=12, key_heads=3, value_heads=3                               (qkv_proj): Linear(in_features=1280, out_features=1152, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=768, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=2048, bias=False)                               (proj_2): Linear(in_features=1024, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (2): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=12, key_heads=3, value_heads=3                               (qkv_proj): Linear(in_features=1280, out_features=1152, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=768, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=2560, bias=False)                               (proj_2): Linear(in_features=1280, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (3): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=12, key_heads=3, value_heads=3                               (qkv_proj): Linear(in_features=1280, out_features=1152, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=768, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=3072, bias=False)                               (proj_2): Linear(in_features=1536, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (4): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=12, key_heads=3, value_heads=3                               (qkv_proj): Linear(in_features=1280, out_features=1152, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=768, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=3584, bias=False)                               (proj_2): Linear(in_features=1792, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (5): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=16, key_heads=4, value_heads=4                               (qkv_proj): Linear(in_features=1280, out_features=1536, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1024, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=4096, bias=False)                               (proj_2): Linear(in_features=2048, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (6): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=16, key_heads=4, value_heads=4                               (qkv_proj): Linear(in_features=1280, out_features=1536, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1024, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=5120, bias=False)                               (proj_2): Linear(in_features=2560, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (7): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=16, key_heads=4, value_heads=4                               (qkv_proj): Linear(in_features=1280, out_features=1536, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1024, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=5632, bias=False)                               (proj_2): Linear(in_features=2816, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (8): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=16, key_heads=4, value_heads=4                               (qkv_proj): Linear(in_features=1280, out_features=1536, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1024, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=6144, bias=False)                               (proj_2): Linear(in_features=3072, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (9): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=16, key_heads=4, value_heads=4                               (qkv_proj): Linear(in_features=1280, out_features=1536, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1024, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=6656, bias=False)                               (proj_2): Linear(in_features=3328, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (10): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=16, key_heads=4, value_heads=4                               (qkv_proj): Linear(in_features=1280, out_features=1536, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1024, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=7168, bias=False)                               (proj_2): Linear(in_features=3584, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (11): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=16, key_heads=4, value_heads=4                               (qkv_proj): Linear(in_features=1280, out_features=1536, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1024, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=7680, bias=False)                               (proj_2): Linear(in_features=3840, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (12): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=20, key_heads=5, value_heads=5                               (qkv_proj): Linear(in_features=1280, out_features=1920, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1280, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=8704, bias=False)                               (proj_2): Linear(in_features=4352, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (13): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=20, key_heads=5, value_heads=5                               (qkv_proj): Linear(in_features=1280, out_features=1920, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1280, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=9216, bias=False)                               (proj_2): Linear(in_features=4608, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (14): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=20, key_heads=5, value_heads=5                               (qkv_proj): Linear(in_features=1280, out_features=1920, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1280, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=9728, bias=False)                               (proj_2): Linear(in_features=4864, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                           (15): OpenELMDecoderLayer(                             (attn): OpenELMMultiHeadCausalAttention(                               query_heads=20, key_heads=5, value_heads=5                               (qkv_proj): Linear(in_features=1280, out_features=1920, bias=False)                               (pos_embedding): OpenELMRotaryEmbedding(        model_dim=64, max_seq_length=4096, freq_constant=10000)                               (q_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (k_norm): OpenELMRMSNorm(num_features=64, eps=1e-06)                               (out_proj): Linear(in_features=1280, out_features=1280, bias=False)                             )                             (ffn): OpenELMFeedForwardNetwork(                               (ffn_with_glu) : True                               (proj_1): Linear(in_features=1280, out_features=10240, bias=False)                               (proj_2): Linear(in_features=5120, out_features=1280, bias=False)                               (act): SiLU()                             )                             (ffn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                             (attn_norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                           )                         )                         (norm): OpenELMRMSNorm(num_features=1280, eps=1e-06)                       )                     )`                  

2. 图示

Qwen, Qwen1.5

Qwen 基于 Transformer 的 Decoder 进行改进的语言模型,吸收了 Llama 的优点,而 Qwen1.5(Qwen2 的 beta 版本)进一步地在 Qwen 的基础上进行创新,并借鉴了 Mistral 的成功经验。Qwen1.5 对 Qwen 主要改进在于使用了 GQA,SWA(Longformer 和 Sparse Transformers),部分模型采用了 MoE 架构,更多细节请查看具体实现。下面给出 Qwen1.5/Qwen2 的模型结构及其图示。

1. 模型架构

`# Qwen2   Qwen2ForCausalLM(                       (model): Qwen2Model(                         (embed_tokens): Embedding(151936, 1024)                         (layers): ModuleList(                           (0-23): 24 x Qwen2DecoderLayer(                             (self_attn): Qwen2SdpaAttention(                               (q_proj): Linear(in_features=1024, out_features=1024, bias=True)                               (k_proj): Linear(in_features=1024, out_features=1024, bias=True)                               (v_proj): Linear(in_features=1024, out_features=1024, bias=True)                               (o_proj): Linear(in_features=1024, out_features=1024, bias=False)                               (rotary_emb): Qwen2RotaryEmbedding()                             )                             (mlp): Qwen2MLP(                               (gate_proj): Linear(in_features=1024, out_features=2816, bias=False)                               (up_proj): Linear(in_features=1024, out_features=2816, bias=False)                               (down_proj): Linear(in_features=2816, out_features=1024, bias=False)                               (act_fn): SiLU()                             )                             (input_layernorm): Qwen2RMSNorm()                             (post_attention_layernorm): Qwen2RMSNorm()                           )                         )                         (norm): Qwen2RMSNorm()                       )                       (lm_head): Linear(in_features=1024, out_features=151936, bias=False)                     )      # Qwen2Moe   Qwen2MoeForCausalLM(     (model): Qwen2MoeModel(       (embed_tokens): Embedding(151936, 2048)       (layers): ModuleList(         (0-23): 24 x Qwen2MoeDecoderLayer(           (self_attn): Qwen2MoeAttention(             (q_proj): Linear(in_features=2048, out_features=2048, bias=True)             (k_proj): Linear(in_features=2048, out_features=2048, bias=True)             (v_proj): Linear(in_features=2048, out_features=2048, bias=True)             (o_proj): Linear(in_features=2048, out_features=2048, bias=False)             (rotary_emb): Qwen2MoeRotaryEmbedding()           )           (mlp): Qwen2MoeSparseMoeBlock(             (gate): Linear(in_features=2048, out_features=60, bias=False)             (experts): ModuleList(               (0-59): 60 x Qwen2MoeMLP(                 (gate_proj): Linear(in_features=2048, out_features=1408, bias=False)                 (up_proj): Linear(in_features=2048, out_features=1408, bias=False)                 (down_proj): Linear(in_features=1408, out_features=2048, bias=False)                 (act_fn): SiLU()               )             )             (shared_expert): Qwen2MoeMLP(               (gate_proj): Linear(in_features=2048, out_features=5632, bias=False)               (up_proj): Linear(in_features=2048, out_features=5632, bias=False)               (down_proj): Linear(in_features=5632, out_features=2048, bias=False)               (act_fn): SiLU()             )             (shared_expert_gate): Linear(in_features=2048, out_features=1, bias=False)           )           (input_layernorm): Qwen2MoeRMSNorm()           (post_attention_layernorm): Qwen2MoeRMSNorm()         )       )       (norm): Qwen2MoeRMSNorm()     )     (lm_head): Linear(in_features=2048, out_features=151936, bias=False)   )`    

2. 图示

T5

T5 是一种与原始 Transformer 非常相似的 encoder-decoder 架构的模型。

1. 模型架构

T5ForConditionalGeneration(                       (shared): Embedding(32128, 768)                       (encoder): T5Stack(                         (embed_tokens): Embedding(32128, 768)                         (block): ModuleList(                           (0): T5Block(                             (layer): ModuleList(                               (0): T5LayerSelfAttention(                                 (SelfAttention): T5Attention(                                   (q): Linear(in_features=768, out_features=768, bias=False)                                   (k): Linear(in_features=768, out_features=768, bias=False)                                   (v): Linear(in_features=768, out_features=768, bias=False)                                   (o): Linear(in_features=768, out_features=768, bias=False)                                   (relative_attention_bias): Embedding(32, 12)                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                               (1): T5LayerFF(                                 (DenseReluDense): T5DenseActDense(                                   (wi): Linear(in_features=768, out_features=3072, bias=False)                                   (wo): Linear(in_features=3072, out_features=768, bias=False)                                   (dropout): Dropout(p=0.1, inplace=False)                                   (act): ReLU()                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                             )                           )                           (1-11): 11 x T5Block(                             (layer): ModuleList(                               (0): T5LayerSelfAttention(                                 (SelfAttention): T5Attention(                                   (q): Linear(in_features=768, out_features=768, bias=False)                                   (k): Linear(in_features=768, out_features=768, bias=False)                                   (v): Linear(in_features=768, out_features=768, bias=False)                                   (o): Linear(in_features=768, out_features=768, bias=False)                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                               (1): T5LayerFF(                                 (DenseReluDense): T5DenseActDense(                                   (wi): Linear(in_features=768, out_features=3072, bias=False)                                   (wo): Linear(in_features=3072, out_features=768, bias=False)                                   (dropout): Dropout(p=0.1, inplace=False)                                   (act): ReLU()                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                             )                           )                         )                         (final_layer_norm): T5LayerNorm()                         (dropout): Dropout(p=0.1, inplace=False)                       )                       (decoder): T5Stack(                         (embed_tokens): Embedding(32128, 768)                         (block): ModuleList(                           (0): T5Block(                             (layer): ModuleList(                               (0): T5LayerSelfAttention(                                 (SelfAttention): T5Attention(                                   (q): Linear(in_features=768, out_features=768, bias=False)                                   (k): Linear(in_features=768, out_features=768, bias=False)                                   (v): Linear(in_features=768, out_features=768, bias=False)                                   (o): Linear(in_features=768, out_features=768, bias=False)                                   (relative_attention_bias): Embedding(32, 12)                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                               (1): T5LayerCrossAttention(                                 (EncDecAttention): T5Attention(                                   (q): Linear(in_features=768, out_features=768, bias=False)                                   (k): Linear(in_features=768, out_features=768, bias=False)                                   (v): Linear(in_features=768, out_features=768, bias=False)                                   (o): Linear(in_features=768, out_features=768, bias=False)                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                               (2): T5LayerFF(                                 (DenseReluDense): T5DenseActDense(                                   (wi): Linear(in_features=768, out_features=3072, bias=False)                                   (wo): Linear(in_features=3072, out_features=768, bias=False)                                   (dropout): Dropout(p=0.1, inplace=False)                                   (act): ReLU()                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                             )                           )                           (1-11): 11 x T5Block(                             (layer): ModuleList(                               (0): T5LayerSelfAttention(                                 (SelfAttention): T5Attention(                                   (q): Linear(in_features=768, out_features=768, bias=False)                                   (k): Linear(in_features=768, out_features=768, bias=False)                                   (v): Linear(in_features=768, out_features=768, bias=False)                                   (o): Linear(in_features=768, out_features=768, bias=False)                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                               (1): T5LayerCrossAttention(                                 (EncDecAttention): T5Attention(                                   (q): Linear(in_features=768, out_features=768, bias=False)                                   (k): Linear(in_features=768, out_features=768, bias=False)                                   (v): Linear(in_features=768, out_features=768, bias=False)                                   (o): Linear(in_features=768, out_features=768, bias=False)                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                               (2): T5LayerFF(                                 (DenseReluDense): T5DenseActDense(                                   (wi): Linear(in_features=768, out_features=3072, bias=False)                                   (wo): Linear(in_features=3072, out_features=768, bias=False)                                   (dropout): Dropout(p=0.1, inplace=False)                                   (act): ReLU()                                 )                                 (layer_norm): T5LayerNorm()                                 (dropout): Dropout(p=0.1, inplace=False)                               )                             )                           )                         )                         (final_layer_norm): T5LayerNorm()                         (dropout): Dropout(p=0.1, inplace=False)                       )                       (lm_head): Linear(in_features=768, out_features=32128, bias=False)                     )   

2. 图示

Yuan2

Yuan 在 Transformer 的 Decoder 进行改进,引入了一种新的注意力机制 LFA。

1. 模型架构

`YuanForCausalLM(                       (model): YuanModel(                         (embed_tokens): Embedding(135040, 2048, padding_idx=77185)                         (layers): ModuleList(                           (0-23): 24 x YuanDecoderLayer(                             (self_attn): YuanAttention(                               (v_proj): Linear(in_features=2048, out_features=2048, bias=False)                               (o_proj): Linear(in_features=2048, out_features=2048, bias=False)                               (rotary_emb): YuanRotaryEmbedding()                               (lf_gate): LocalizedFiltering(                                 (conv1): Conv2d(2048, 1024, kernel_size=(2, 1), stride=(1, 1), padding=(1, 0))                                 (conv2): Conv2d(1024, 2048, kernel_size=(2, 1), stride=(1, 1), padding=(1, 0))                                 (output_layernorm): YuanRMSNorm()                               )                               (q_proj): Linear(in_features=2048, out_features=2048, bias=False)                               (k_proj): Linear(in_features=2048, out_features=2048, bias=False)                             )                             (mlp): YuanMLP(                               (up_proj): Linear(in_features=2048, out_features=8192, bias=False)                               (gate_proj): Linear(in_features=2048, out_features=8192, bias=False)                               (down_proj): Linear(in_features=8192, out_features=2048, bias=False)                               (act_fn): SiLU()                             )                             (input_layernorm): YuanRMSNorm()                             (post_attention_layernorm): YuanRMSNorm()                           )                         )                         (norm): YuanRMSNorm()                       )                       (lm_head): Linear(in_features=2048, out_features=135040, bias=False)                     )`              

2. 图示

人工智能大模型越来越火了,离全民大模型的时代不远了,大模型应用场景非常多,不管是做主业还是副业或者别的都行,技多不压身,我这里有一份全套的大模型学习资料,希望给那些想学习大模型的小伙伴们一点帮助!

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

  • 47
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值