AI面试大纲

大纲

1. 介绍和背景

自我介绍(5分钟)
了解候选人的教育背景、工作经历和对大模型架构的兴趣。

2. 基础理论和概念(30分钟)

机器学习基础
解释基本概念,如监督学习、无监督学习和强化学习。
讨论不同的模型类型,如线性回归、决策树、支持向量机等。
深度学习基础
解释神经网络的基本组成部分,如神经元、层和激活函数。
讨论前馈神经网络、卷积神经网络(CNN)、递归神经网络(RNN)等。

3. 大模型架构设计(45分钟)

模型选择
如何选择适合特定任务的大模型架构?
讨论常见的大模型架构,如BERT、GPT、Transformer等。
架构设计
讨论大模型的层次结构和设计原则。
如何处理大模型的参数和层数?
解释多头自注意力机制和位置编码。
扩展性和可伸缩性
如何处理大规模数据?
讨论分布式训练和并行计算技术。

4. 实现与优化(45分钟)

模型训练

讨论常见的训练技巧和策略,如梯度下降、学习率调度和正则化。
如何处理训练过程中遇到的过拟合和欠拟合问题?
模型优化

讨论模型压缩技术,如剪枝、量化和知识蒸馏。
如何优化模型的推理速度和内存占用?
工具和框架

讨论常用的深度学习框架,如TensorFlow、PyTorch等。
如何选择和使用合适的框架进行大模型的实现?

5. 实践案例分析(30分钟)

案例分析
请候选人详细讲解一个他们参与的大模型项目,从需求分析、架构设计到实现与优化。
讨论项目中遇到的挑战和解决方案。

6. 系统设计与问题解决(30分钟)

系统设计

给出一个实际应用场景,让候选人设计一个大模型解决方案。
讨论设计的可行性、优缺点及可能的改进方向。
问题解决

提供常见问题场景,如模型训练不收敛、性能瓶颈等,考察候选人的问题解决能力和思路。

7. 前沿研究和趋势(20分钟)

前沿研究

讨论最近的大模型研究进展和新兴技术。
如何跟踪最新的研究成果并应用到实际项目中?
未来趋势

讨论大模型的发展趋势和可能的创新方向。

8. 综合评估与问答(20分钟)

综合评估
总结面试中的关键点,评估候选人的综合能力。
问答环节
候选人可以提出他们对公司的问题,讨论职业发展、团队文化等。

9. 结束语

面试总结(5分钟)
总结面试内容,感谢候选人的参与,并告知后续流程。
这个大纲旨在全面评估候选人在大模型架构方面的理论知识、实际经验和解决问题的能力,并确保候选人和面试官之间有充分的互动。

基础

Token 与 Embedding 的原理

Token 的原理
Token 是自然语言处理中将文本转化为机器可处理的输入单元。文本被拆分成若干个基本单元,这些单元称为 token。Token 可以是单词、子词或字符,具体取决于使用的 tokenization 方法。常见的 tokenization 方法包括:

  • 单词级别 Tokenization:
    直接将句子拆分为单词,例如句子 “I love AI” 被拆分为 [“I”, “love”, “AI”]。
  • 子词级别 Tokenization:
    使用 BPE(Byte Pair Encoding)或 WordPiece 方法将句子拆分为子词。例如,“unhappiness” 被拆分为 [“un”, “##happiness”]。
  • 字符级别 Tokenization:
    将句子拆分为字符。例如,“AI” 被拆分为 [“A”, “I”]。
    Tokenization 的目的是将文本转换为离散的符号序列,以便于模型处理。

Embedding 的原理

Embedding 是将离散的 token 映射到连续的向量空间中。每个 token 都会被表示为一个固定维度的实数向量,这些向量捕捉了词语的语义关系。常见的 Embedding 技术包括:

  • 词向量(Word Vectors):
    Word2Vec:通过 Skip-gram 或 CBOW(Continuous Bag of Words)模型训练得到的词向量,捕捉了词语之间的语义关系。
    GloVe(Global Vectors for Word Representation):通过统计词共现信息训练得到的词向量。
  • 上下文相关的 Embedding:
    ELMo(Embeddings from Language Models):通过双向 LSTM 训练得到的上下文相关的词向量。
    BERT(Bidirectional Encoder Representations from Transformers):通过双向 Transformer 训练得到的词向量,捕捉了更丰富的上下文信息。
    Embedding 的目的是将离散的 token 转换为可供神经网络处理的实数向量,并且这些向量能够捕捉到词语之间的语义关系。

案例分析

案例:使用 BERT 模型进行情感分析

  • 文本输入和 Tokenization:
    输入句子:“I love this movie, it is fantastic!”
    使用 BERT 的 Tokenizer 进行 tokenization:
from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokens = tokenizer.tokenize("I love this movie, it is fantastic!")
print(tokens)
输出:
['i', 'love', 'this', 'movie', ',', 'it', 'is', 'fantastic', '!']

  • Token 转换为 ID:
    将 token 转换为对应的 ID:
token_ids = tokenizer.convert_tokens_to_ids(tokens)
print(token_ids)
输出:
[1045, 2293, 2023, 3185, 1010, 2009, 2003, 10392, 999]
生成 Embedding 向量:

  • 使用预训练的 BERT 模型生成 embedding 向量:
from transformers import BertModel
import torch

model = BertModel.from_pretrained('bert-base-uncased')
inputs = torch.tensor([token_ids])
outputs = model(inputs)
embeddings = outputs.last_hidden_state
print(embeddings.shape)
输出:
torch.Size([1, 9, 768])

  • 情感分析模型:
    将生成的 embedding 向量输入到情感分析模型(如 LSTM、Transformer 或简单的全连接网络)中进行情感预测。

总结

在这个案例中,文本首先经过 Tokenization 处理,转化为离散的 token,然后这些 token 被映射为实数向量(embedding)。通过 BERT 模型生成的上下文相关的词向量,可以捕捉到句子中每个词的语义信息。最后,这些词向量被用于情感分析任务,帮助模型预测句子的情感类别。通过这种方式,Token 和 Embedding 技术极大地提升了自然语言处理任务的效果。

AI Agent 与 RAG 的原理

AI Agent 的原理

AI Agent 是一个能够自主执行任务并根据环境变化进行决策的智能系统。AI Agent 的基本组件包括:

  • 感知(Perception):
    AI Agent 从环境中收集信息,通过传感器、摄像头或其他输入设备感知外界。
  • 决策(Decision Making):
    AI Agent 基于感知到的信息,使用算法(如规则引擎、机器学习模型或深度学习模型)进行决策。
  • 行动(Action):
    AI Agent 执行决策,采取相应的行动。这些行动可以是物理动作(如机器人移动)或虚拟操作(如数据库查询)。
  • 反馈(Feedback):
    AI Agent 从执行的行动中获得反馈,调整未来的感知和决策,优化行为。
    AI Agent 的工作流程是一个闭环,感知、决策、行动和反馈不断循环,Agent 不断学习和适应环境。

RAG(Retrieval-Augmented Generation)的原理

RAG(Retrieval-Augmented Generation)是结合信息检索和生成模型的方法,用于提高文本生成任务的性能。RAG 的工作原理包括两个主要部分:

  • 检索(Retrieval):
    从一个大型文档库或知识库中检索出与输入查询相关的文档片段。检索模型通常使用向量空间模型(如 BM25、DPR 等)将查询和文档表示为向量,并通过相似性计算找到相关文档。
  • 生成(Generation):
    使用生成模型(如 GPT、BERT 等)基于检索到的文档片段和输入查询生成输出文本。生成模型将检索到的信息作为上下文,以生成更准确和相关的回答。
    RAG 模型通过结合检索和生成,提高了回答的准确性和相关性,特别适用于需要外部知识的生成任务。

案例分析

1.案例:AI Agent 执行家庭助理任务

  • 感知:
    使用麦克风和摄像头感知家庭环境中的声音和图像。例如,识别主人说的话和房间的状态。
  • 决策:
    基于语音识别结果和图像分析,AI Agent 决定下一步行动。例如,主人说“打开客厅的灯”,AI Agent 识别指令并通过决策模块确定要执行的操作。
  • 行动:
    AI Agent 通过智能家居系统发送指令,打开客厅的灯。
  • 反馈:
    AI Agent 从灯光状态的变化中获得反馈(例如,通过图像识别灯光是否打开),并根据反馈调整未来的感知和决策。
    2.案例:RAG 用于问答系统
  • 输入查询:
    用户输入查询:“What is the capital of France?”
  • 检索:
    使用检索模型从知识库中找到与查询相关的文档片段。例如,检索到的片段包括:“Paris is the capital of France.”
  • 生成:
    生成模型基于检索到的片段和输入查询生成回答。生成模型利用检索到的上下文信息,生成输出:“The capital of France is Paris.”
  • 输出回答:
    系统返回生成的回答给用户:“The capital of France is Paris.”

总结

AI Agent 和 RAG 代表了两种不同的智能系统方法。AI Agent 通过感知、决策、行动和反馈的闭环机制自主执行任务,并根据环境变化进行调整。RAG 通过结合检索和生成模型,提高了需要外部知识的文本生成任务的准确性和相关性。两者在各自领域内都有广泛的应用,能够解决不同类型的实际问题。

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值