LLM典藏版!清华大学《模式识别与机器学习》第4版教材书!

在当今这个信息量激增的时代,我们被大量的数据所包围。如何从这些数据中挖掘出有价值的信息,正是模式识别和机器学习领域所要解决的问题。今天,我想向大家推荐一本在这个领域内备受推崇的书籍——《模式识别:模式识别与机器学习(第4版)》。这本书不仅是一本教材,也是一本研究指南,它旨在帮助你掌握从数据中提取信息的技能。

请添加图片描述

这本书在编写上力求系统性和实用性的平衡,全面覆盖了机器学习和模式识别领域的主要流派,并紧跟学科发展的最前沿。每一章节都融入了作者对相关理论和方法的深刻见解和讨论,使其不仅是一本传授知识的教科书,更是一本引导研究的指南。

请添加图片描述

《模式识别与机器学习》第4版全面介绍了该领域的基础概念和代表性方法。从贝叶斯决策理论、概率密度函数估计,到贝叶斯网络、隐马尔可夫模型、线性与非线性判别函数,再到人工神经网络、支持向量机、统计学习理论,以及近邻法、决策树、随机森林和集成学习,这本书几乎囊括了所有经典的方法和理论。

请添加图片描述

更进一步,书中还详细介绍了当前最前沿的深度学习方法,包括卷积神经网络、循环神经网络与LSTM、深度信念网络、深度自编码器、限制性玻尔兹曼机、生成对抗网络等。这些内容不仅为读者提供了深度学习领域的最新技术,也为那些希望在这一领域深入研究的读者提供了宝贵的资源。

请添加图片描述

这本书的内容丰富,不仅适合作为高校相关专业的教材,也适合作为研究人员和实践者的参考书籍。它不仅能够帮助学生和研究人员建立起坚实的理论基础,还能够指导他们在实际问题中应用这些理论,解决实际问题。

请添加图片描述

总的来说,《模式识别与机器学习》第4版是一本全面、深入且实用的教材,它为读者提供了一个学习和理解模式识别和机器学习领域的平台。无论是对于初学者还是有经验的专业人士,这本书都是一个宝贵的资源,能够帮助他们在数据的海洋中发现知识的宝藏。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值