当下DeepSeek可以帮你赚钱的几个路径

这两天,我下了两个AI应用:一个是周鸿祎的纳米AI,因为这两天他要在上面送车,100辆!(还没下的可以用一用我的邀请码吗?谢谢!邀请码:C4JAQ)一个是这两天疯狂刷屏的DeepSeek。

作为新媒体人,很多AI我都体验过,从chatGPT、midjourney到豆包、Kimi、即梦……

说实话,作为打工人我一点也不害怕被AI取代,我反而很感谢这些工具,感恩时代的馈赠。多亏有了AI,才让我们在面对老板的无厘头要求时,从容应对。

言归正传,说说DeepSeek,它到底是什么?

DeepSeek是一款由中国团队开发的AI大模型,它在数学推理、编程、语意理解的各项测试中,与目前公认全球最高水平的GPT不相上下。

生产它的公司全称是杭州深度求索人工智能基础技术研究有限公司,成立于2023年7月17日。

它有两大创举:

1、第一是打破了美国对我们的芯片制裁,戒断了AI对高端芯片的依赖,因为DeepSeek的开发使用的仅仅是相对低端的H800芯片。

2、第二是它以更低的训练成本打败了国外的TOP级AI chatGPT,用有的媒体的话说就是,“训练成本不到其它大厂的1%”。

而且Deepseek现在完全开源。这意味着很多人都可以利用它进行二次开发,而利用的同时也会对其保持一定的依赖以及进入DeepSeek的逻辑。

那么,目前站在AI风口当下,如何利用Deepseek帮我们找到一些赚钱的机会呢?

目前发现的普通人可以上手的赚钱机会(没实践过,不一定靠谱)

1、成为AI行业研究员。目前很多AI公众号都有相关岗位,就是研究行业写文章。薪资在12-40万不等。如果感兴趣的朋友可以自行了解,我偶尔看到的一些求职机会。

2、使用DeepSeek生成短视频脚本(如科普/影视解说),搭配剪映自动剪辑,批量产出视频。利用播放量分成或带货变现。

3、AI数据标注

这个工种,大家可能相对陌生。简单解释一下,这个工作就是教AI看图识物的过程,通过给原始数据打标签,让AI模型理解数据的含义。

标注类型举例:
图像标注:用框线标出照片中的行人(自动驾驶训练)
语音标注:将方言录音转写成文字(智能音箱训练)
文本标注:标记用户评论的情感倾向(好评/差评)

完整工作流程:
原始数据收集 → 清洗无效数据 → 人工标注 → 质量校验 → 交付给AI公司

月收入参考:熟练者可达5000-8000元(需每天工作6-8小时)

普通人参与渠道
官方平台:

  • 京东众智(JD Crowdsourcing)
  • 百度数据标注众包平台
  • 科大讯飞标注平台

第三方接单:

  • 腾讯搜活帮(微信小程序)
  • 龙猫数据(专注图像标注)
  • 数据堂(多语种标注需求)

新兴机会:

  • 自动驾驶公司标注需求(需3D点云标注技能)
  • 医疗AI标注(需基础医学知识,单价可达常规任务的3倍)

避坑指南:

  • 警惕"先交培训费"的骗局
  • 接单前确认验收标准(如标注框像素级精度要求)
  • 避免接含个人隐私的数据标注(如人脸识别数据)

建议:优先选择医疗、法律等垂直领域标注,这类任务技术要求高且竞争较小。例如骨科CT影像标注,熟练者日收入可达常规任务的2-3倍,但需要提前学习基础医学知识。

4、行业解决方案
实体店案例:为本地婚纱摄影店搭建AI客服系统,使用DeepSeek-API自动回复客户咨询。
实施步骤:
(1) 注册阿里云函数计算服务
(2)调用DeepSeek对话API
(3)对接企业微信接口

收费模式:按咨询量收费(0.5-1元/次)或年费制(3000-8000元/年)。

5、AI数字分身服务
使用DeepSeek+HeyGen生成虚拟主播,为中小商家制作产品讲解视频。成本结构:20分钟视频制作约消耗API费用15元,对外报价300-500元。

6、跨境AI工具站
利用Gradio快速搭建AI写作工具站,通过Google AdSense变现。
关键数据:日均500访问量可实现约20美元广告收益,服务器成本约5美元/月。

另外,我还问了AI此轮风口的周期,它的回答是:当前AI技术红利期窗口预计持续12-18个月,建议选择1-2个细分领域快速切入,在6个月内完成商业模式验证。重点推荐本地生活服务AI化方向,据艾瑞咨询数据,2024年该领域市场规模预计达280亿元,年复合增长率67%。

朋友们,我越来越觉得属于超级个体的时代来临了!

谁能最先掌握AI工具,善用利用其变现,谁就能最快抓住时代红利!我觉得这是一场个人战,一人公司将成为未来的常态。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### DeepSeek功能特性 DeepSeek系列大模型具备多种版本,每种版本针对不同需求进行了优化。具体而言: - **DeepSeek-Lite**:该版本拥有约10亿参数量,主要特点是低延迟和高吞吐能力,适用于需要快速响应的应用场景,比如实时对话服务以及移动设备上的应用程序开发[^2]。 - **DeepSeek-Pro**:此版本具有大约130亿个参数,适合执行较为复杂的多任务处理工作,例如为企业提供高效的客户服务解决方案或是辅助进行深入的数据分析操作。 - **DeepSeek-Max**:作为最强大的一款产品,它包含了超过700亿个参数,并且能够支持多媒体数据输入输出,擅长解决涉及高级逻辑推理的任务,在科学研究领域或金融市场高频交易决策方面有着广泛的应用前景。 除了上述特定型号外,最新发布的DeepSeek-V3版本在整体性能上也取得了显著进步。特别是在知识型任务测试中,其成绩几乎可以媲美当下最先进的同类竞品;而在处理较长文本内容时,则显示出优于对手的优势[^3]。 ### 使用场景举例 #### 实时交互式问答系统 利用DeepSeek构建的聊天机器人可以在医疗环境中为患者解答常见疑问,减轻医护人员负担的同时提高服务质量效率。这类应用通常会选择轻量化但反应迅速的Lite版来实现最佳用户体验[^1]。 ```python from deepseek_lite import ChatBot bot = ChatBot() response = bot.get_response(user_input="请问明天挂号还需要预约吗?") print(response) ``` #### 数据驱动的企业级客户关系管理 对于医疗机构来说,Pro级别的DeepSeek可以助建立更加智能化的信息管理系统,通过自然语言理解技术自动分类整理病患反馈意见并给出改进建议,从而提升运营管理水平。 ```python from deepseek_pro import CRMSystem crm_system = CRMSystem() analysis_result = crm_system.analyze_feedbacks(feedbacks_list=["医生态度很好", "等待时间过长"]) print(analysis_result) ``` #### 多学科协作研究平台 Max版本凭借出色的多模态理解和复杂情境下的推断能力,成为连接临床实践与基础理论之间桥梁的理想工具之一。研究人员可借助这一强大引擎加速新药研发进程或者探索未知疾病机制等问题。 ```python from deepseek_max import ResearchAssistant research_assistant = ResearchAssistant() insights = research_assistant.generate_hypotheses(research_question="癌症早期检测方法有哪些潜在突破方向?") print(insights) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值