这两天,我下了两个AI应用:一个是周鸿祎的纳米AI,因为这两天他要在上面送车,100辆!(还没下的可以用一用我的邀请码吗?谢谢!邀请码:C4JAQ)一个是这两天疯狂刷屏的DeepSeek。
作为新媒体人,很多AI我都体验过,从chatGPT、midjourney到豆包、Kimi、即梦……
说实话,作为打工人我一点也不害怕被AI取代,我反而很感谢这些工具,感恩时代的馈赠。多亏有了AI,才让我们在面对老板的无厘头要求时,从容应对。
言归正传,说说DeepSeek,它到底是什么?
DeepSeek是一款由中国团队开发的AI大模型,它在数学推理、编程、语意理解的各项测试中,与目前公认全球最高水平的GPT不相上下。
生产它的公司全称是杭州深度求索人工智能基础技术研究有限公司,成立于2023年7月17日。
它有两大创举:
1、第一是打破了美国对我们的芯片制裁,戒断了AI对高端芯片的依赖,因为DeepSeek的开发使用的仅仅是相对低端的H800芯片。
2、第二是它以更低的训练成本打败了国外的TOP级AI chatGPT,用有的媒体的话说就是,“训练成本不到其它大厂的1%”。
而且Deepseek现在完全开源。这意味着很多人都可以利用它进行二次开发,而利用的同时也会对其保持一定的依赖以及进入DeepSeek的逻辑。
那么,目前站在AI风口当下,如何利用Deepseek帮我们找到一些赚钱的机会呢?
目前发现的普通人可以上手的赚钱机会(没实践过,不一定靠谱)
1、成为AI行业研究员。目前很多AI公众号都有相关岗位,就是研究行业写文章。薪资在12-40万不等。如果感兴趣的朋友可以自行了解,我偶尔看到的一些求职机会。
2、使用DeepSeek生成短视频脚本(如科普/影视解说),搭配剪映自动剪辑,批量产出视频。利用播放量分成或带货变现。
3、AI数据标注
这个工种,大家可能相对陌生。简单解释一下,这个工作就是教AI看图识物的过程,通过给原始数据打标签,让AI模型理解数据的含义。
标注类型举例:
图像标注:用框线标出照片中的行人(自动驾驶训练)
语音标注:将方言录音转写成文字(智能音箱训练)
文本标注:标记用户评论的情感倾向(好评/差评)
完整工作流程:
原始数据收集 → 清洗无效数据 → 人工标注 → 质量校验 → 交付给AI公司
月收入参考:熟练者可达5000-8000元(需每天工作6-8小时)
普通人参与渠道
官方平台:
- 京东众智(JD Crowdsourcing)
- 百度数据标注众包平台
- 科大讯飞标注平台
第三方接单:
- 腾讯搜活帮(微信小程序)
- 龙猫数据(专注图像标注)
- 数据堂(多语种标注需求)
新兴机会:
- 自动驾驶公司标注需求(需3D点云标注技能)
- 医疗AI标注(需基础医学知识,单价可达常规任务的3倍)
避坑指南:
- 警惕"先交培训费"的骗局
- 接单前确认验收标准(如标注框像素级精度要求)
- 避免接含个人隐私的数据标注(如人脸识别数据)
建议:优先选择医疗、法律等垂直领域标注,这类任务技术要求高且竞争较小。例如骨科CT影像标注,熟练者日收入可达常规任务的2-3倍,但需要提前学习基础医学知识。
4、行业解决方案
实体店案例:为本地婚纱摄影店搭建AI客服系统,使用DeepSeek-API自动回复客户咨询。
实施步骤:
(1) 注册阿里云函数计算服务
(2)调用DeepSeek对话API
(3)对接企业微信接口
收费模式:按咨询量收费(0.5-1元/次)或年费制(3000-8000元/年)。
5、AI数字分身服务
使用DeepSeek+HeyGen生成虚拟主播,为中小商家制作产品讲解视频。成本结构:20分钟视频制作约消耗API费用15元,对外报价300-500元。
6、跨境AI工具站
利用Gradio快速搭建AI写作工具站,通过Google AdSense变现。
关键数据:日均500访问量可实现约20美元广告收益,服务器成本约5美元/月。
另外,我还问了AI此轮风口的周期,它的回答是:当前AI技术红利期窗口预计持续12-18个月,建议选择1-2个细分领域快速切入,在6个月内完成商业模式验证。重点推荐本地生活服务AI化方向,据艾瑞咨询数据,2024年该领域市场规模预计达280亿元,年复合增长率67%。
朋友们,我越来越觉得属于超级个体的时代来临了!
谁能最先掌握AI工具,善用利用其变现,谁就能最快抓住时代红利!我觉得这是一场个人战,一人公司将成为未来的常态。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓