Qwen3发布仅半个月,惊艳表现引发广泛关注,AI技术新突破!

不知道有多少技术圈的朋友,在五一假期到来前熬了个大夜,只为等这一刻:4 月 29 日,阿里正式开源了全新的 Qwen3(千问 3)大模型。

没想到一经发布,它就冲上了国际权威榜单 LiveBench 的开源模型榜首,毫不意外地成了 AI 圈的 “顶流”。

image-20250514120909257

作为国内首个 “混合推理模型”,千问 3 在性能上全面超越 DeepSeek R1 等一众领先模型,刷新了国产模型及全球开源模型的新高度。

近日,国际权威媒体日本经济新闻(NIKKEI)公布了 4 月 AI 模型的评分榜,引起了我们的注意。

在 113 个模型综合评测中,阿里的 Qwen2.5-Max 模型排名第 6,斩获了开源模型中第一的佳绩,日经新闻更是直言通义千问是日本 AI 开发的基础。

image-20250513205104581

这一令人振奋的成绩并非偶然,而是有坚实基础的。截至目前,阿里通义团队已默默开源了 200 多款涵盖全模态(文本、视觉、语音、视频等)的 AI 模型。

正是这种坚持不懈的开源精神,使得千问成为全球那些 AI 模型开发技术能力有限的国家和地区首选基础模型。

各地开发者纷纷基于千问进行二次开发,打造适合本地语言环境的 AI 模型。这也解释了为何通义千问 Qwen 在全球的模型下载量超过 3 亿次。

而在全球开源模型榜单(Open LLM Leaderboard)中,我们也会经常发现前十名里基于千问二次开发的衍生模型占据着绝大多数位置。

image-20250514083359866

据有关数据显示,千问的衍生模型数量已突破 10 万,超越了 Meta 的 Llama 开源模型。

随着千问 3 的发布,这一全球领先的开源模型将进一步巩固其作为全球各国 AI 开发核心基础的地位。

多语言能力的飞跃

除了推理能力、代码能力的全面升级,千问 3 在多语言支持上的突破同样令人瞩目。

从原来支持的 29 种语言一跃扩展到 119 种,覆盖了全球大量语言和方言。

包括中、英、法、西、俄、阿拉伯等联合国官方语言,以及德、意、日、韩、泰、越南、尼泊尔、瑞典、波兰、匈牙利等各国官方语言。

更值得一提的是,千问 3 还支持众多地方性语言和方言,如我们的粤语、中东的意第绪语、东南亚的爪哇语、美洲的海地语等。

不得不说,这种语言覆盖面让千问 3 成了名副其实的 “全球模型”。

image-20250513220600313

开发者和企业的创新引擎

正是因为千问有这么强大的语言支持和开源特性,所以全球各地的企业和开发者都纷纷基于它进行创新开发。

比如日本知名科技公司 ABEJA,他们基于阿里 Qwen2.5-32B 开发了 ABEJA-Qwen2.5-32b 模型,在日语 50B 以下模型中取得顶级性能,并在日本模型榜单中名列前茅,仅次于 GPT 和 Claude。

image-20250513232322552

image-20250513232521249

在企业内部应用方面,我们还看到不少开发者选择千问 3 来构建 RAG(检索增强生成)解决方案。对比闭源的 ChatGPT,选择开源的千问 3 不仅解决了数据安全的顾虑,还能更自由地进行定制。

image-20250513232759332

而千问出色的语言可扩展性,也引发了很多开发者对它进行小语种微调。比如这个颇有趣且实用的例子,基于 Qwen-7B 微调的粤语模型 Qwen-7B-Chat-Cantonese,可以用来学习粤语。

image-20250513235546382

Qwen 7B Chat Cantonese Screenshot May 4

还有,我们发现有一位国外开发者用 Qwen2.5 3B 模型做了一个专门回答法语法律问题的应用,满足了特定领域的需求。

image-20250514000821967

类似的应用案例其实还有很多很多,就不一一分享了,总之千问正用它强大的基础能力支撑着各种创新场景。

世界 AI 舞台上的中国声音

世界 AI 舞台上阿里已然获得关键席位,在《2025年人工智能指数报告》中显示,阿里云通义系列在 2024 年度全球重要大模型中排名第三,仅次于谷歌和 OpenAI。

图片

这份连续发布八年的年度报告由斯坦福人工智能实验室主任李飞飞教授领衔编制,自 2017 年首度发布以来,已成为全球学术界和产业界观察 AI 技术演进的重要参照。

更值得一提的是,在这份报告中特别指出,中美模型性能差距已从 2023 年的 17.5% 骤降至仅 0.3%,这表明中国 AI 技术正迅速接近全球领先水平。

阿里 AI 实力报告 640

另外,阿里入选的 6 款模型,分别是 Qwen-72B、Qwen1.5-72B、Qwen2-72B、Qwen2.5-72B、Qwen2.5-32B 和 QwQ-32B,占据了中国贡献的 15 项大模型中的近半数,成为中国 AI 在全球影响力崛起的主要推手。

写在最后

从全球排名第三的位置到中美技术差距的迅速缩小,千问系列的成就已经证明中国 AI 正以惊人速度走向世界舞台的中心。

随着千问 3 带来了更强大的性能和 119 中语言支持,越来越多地区的开发者选择基于千问打造本地化 AI 应用,这一趋势将会进一步加强。

通过坚持开源策略并扩大全球生态,千问的崛起不仅让中国在国际 AI 领域中拥有了更多话语权,更标志着中国 AI 已从技术跟随者迅速成长为全球创新引领者。

放眼到未来,AI 技术的发展不应该是少数巨头的 “独角戏”,而应该是全球开发者共同参与的 “交响乐”。

在这场国际 AI 交响乐中,通义千问正奏响属于中国的动人乐章!

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值