无敌组合!Cline + DeepSeek R1 + Claude 3.5 Sonnet 助力 AI 编程

随着最近 DeepSeek 模型的爆火,在我们使用 Cline 进行编程的时候,我们越来越关注如何更高效地结合多种模型来提升开发体验。而 Cline v3.2.6 的 Plan/Act 特性的推出,让我们有机会将最强的推理模型之一 DeepSeek R1 与最强编码模型 Claude 3.5 Sonnet 结合,提供不同凡响的编程体验。

clinedeepseekr1claud-0

什么是 Cline 的 Plan/Act 模式?

Cline 在最新版本(v3.2.6)推出了一个非常重要的功能:Plan/Act 切换模式。这个模式允许用户灵活地选择在开发过程中什么时候进行计划(Plan),什么时候直接执行(Act)。两种模式的切换,帮助开发者能够更好地控制 AI 的使用方式和模型选择,从而提高代码质量与开发效率。
这和我们开发人员实际做需求的流程有异曲同工之妙,良好的设计和规划不仅可以减少我们代码的开发时间,更重要的是确认 AI 理解清楚了我们提出的需求,从而准确的将需求转换成代码。

Plan Mode

在这个模式下,AI 主要负责设计和审查解决方案,通过深度分析并提供多个解决方案选择。这个阶段不仅是 AI 与开发者沟通的关键时刻,也是确保项目正确性、避免方向错误的关键一步。用户可以反复迭代和调整思路,直到确定最佳方案再进入下一阶段。

Act Mode

当决定好方案后,AI 进入 执行模式,进行简单直接的实现。这时,AI 自动选择最适合当前任务的模型,快速高效地生成代码,直接将规划阶段的方案付诸实践。

如何使用 DeepSeek R1 和 Claude 3.5 Sonnet 提升开发效率?

DeepSeek R1 做规划:优势分析

DeepSeek R1,作为一款强大的推理模型,特别擅长处理复杂的系统设计和架构规划。在 Cline 的 Plan Mode 中,DeepSeek R1 可以深入分析项目需求、评估不同的技术方案,并给出优化建议。在复杂的项目中,它能够清晰地理顺代码结构、进行可行性分析并给出具体的解决方案。

例如,当我们需要在一个复杂项目中集成 Supabase Authentication 这样的功能时,DeepSeek R1 可以先进行全面的需求分析,并提供不同的实现路径。它帮助开发者跳过一开始的迷茫阶段,直接从宏观上掌控项目方向,避免了因为不合理的设计导致使用 Claude 3.5 Sonnet 的高成本。

Claude 3.5 Sonnet 做编码:精确高效

当规划阶段完成后,开发者可以将 DeepSeek R1 提供的解决方案交给 Claude 3.5 Sonnet 进行具体的编码实现。Claude 3.5 Sonnet,作为当前最强的编码 AI,在 Act 模式下具有无与伦比的代码生成能力,特别适合在清晰明确的规划基础上执行任务。

Claude 3.5 Sonnet 在执行代码时能确保高效且精确的输出,其高稳定性和低错误率在实际编码中表现出色。通过结合 DeepSeek R1 的规划与 Claude 3.5 Sonnet 的编码能力,开发者不仅可以提升编码的速度,还能够大大减少因设计不良或不完善的解决方案所带来的编码错误。

实践应用:如何在 Cline 中使用 DeepSeek R1 和 Claude 3.5 Sonnet

以我们之前的任务——集成 Supabase Authentication 为例,使用 Cline 的 Plan/Act 模式可以如下进行:

1. Plan Mode
开发者首先将任务交给 DeepSeek R1,它会分析 Supabase Authentication 的要求,并为开发者提供几个集成方案,帮助选择最优路径。

clinedeepseekr1claud-2

2. Act Mode
在确认了最佳方案后,开发者进入 Act Mode,将 DeepSeek R1 提供的架构设计交给 Claude,Claude 立即根据方案生成代码,快速实现功能。

clinedeepseekr1claud-3

clinedeepseekr1claud-4

3. 测试和调整
如果在执行过程中出现新的需求或问题,开发者可以返回 Plan Mode 进行新的规划调整,再由 Claude 执行更新的设计。

这种模式让开发者不仅能在项目开始前把握全局,还能在执行过程中保持高效,避免重复的错误和设计上的失误。

总结:Plan/Act 模式让 AI 成为真正的开发伙伴

Cline 的 Plan/Act 切换模式 为开发者提供了前所未有的灵活性,特别是在结合了 DeepSeek R1 的规划能力 和 Claude 的编码能力 后,开发效率和代码质量得到了显著提升。无论是处理复杂的系统架构设计,还是快速高效地执行任务,这种模式都能帮助开发者实现更高的生产力。

通过将规划与执行分开管理,开发者能够在更加清晰的框架下使用 AI 提供的强大帮助,从而最大化利用 AI 模型的优势,真正做到 智能化开发,事半功倍。

你也可以尝试使用 Cline 来体验这种模式,看看它如何提升你的开发效率。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值