LLM大模型基础知识:全面学习总结,非常详细收藏我这一篇就够了!

在这个已经被大模型包围的时代,不了解一点大模型的基础知识和相关概念,可能出去聊天都接不上话。刚好近期我也一直在用ChatGPT和GitHub Copilot,也刚好对这些基础知识很感兴趣,于是看了一些科普类视频和报告,做了如下的整理总结,分享与你!

一句话描述GPT

GPT全称Generative Pre-Training Transformer,即三个关键词:生成式 预训练 变换模型

GPT模型通过在大量数据上学习到的语言模式,预测下一个字(token),生成自然语言文本。

大模型的6大关键技术

  • 大模型

类似于人类的大脑,通过思考和规划来完成任务;

  • Prompt(提示词工程)

类似于人类的沟通,上级通过布置任务来让下级完成一项任务;

  • RAG(检索增强生成)

类似于人类想要暂时完成一件任务,但是这件任务暂时不会做。例如马上要大学期末考试了,我们需要临时抱佛脚突击一周,以求得考试及格分数,但是考完试以后,这些知识就忘得一干二净了。又或者说它也类似于大学期末的开卷考试,反正知识点都在书里,你平时都没学过,得先找一找,找到了就把相关答案写在试卷上,考完了还是忘得一干二净,但是你的目标达到了:考试及格60分万岁!

  • Fine-tunig(微调)

类似于人类想要彻底学会一个技能,例如想要学会大模型的技术,我们需要通过系统的培训以及通过实战去真正的掌握大模型技术。

  • Function Calling(函数调用)

类似于人类使用工具完成一件任务,例如想要查询成都的天气情况,我们要么直接打开天气预报的App,要么直接在百度上搜索,总之是通过工具来完成这件事。

  • Agent

类似于人类通过沟通、分工和协作来完成一件复杂的任务,通常会结合使用到上面提到的五个技术来完成任务,而且大模型时代的Agent也不是单兵作战而是多个Agent之间合作来完成任务。例如想要开发一个客服项目,需要产品经理Agent、架构师Agent、开发者Agent、测试者Agent、运维Agent 和 项目管理Agent 像人类一样去沟通协作,最后才能把这个项目自动地完成。

知识问答的3种主要方式

(1)大模型直答

最常见的方式:直接向LLM提问,LLM给出回答。

(2)大模型微调(Fine-Tuning)

首先,将企业私有知识加给通用大模型进行微调形成私有大模型;然后,再将问题给到私有大模型进行回答。

(3)大模型RAG(检索增强生成)

首先,对企业的知识库进行检索得到相关的知识片段;然后,将知识片段和原问题组合成新的提示词发给通用大模型得到回答;

3种方式的效果对比:

方式

外在幻觉

领域知识

实时信息

可溯源

成本

直答

微调

RAG

总结:在企业落地知识问答库时,如果为了追求成本和回答准确度,推荐使用RAG方案

AI Agent到底是什么?

首先,在产品层面:AI Agent是AGI时代新的应用形态

这其实是应用形态的演进:在AGI时代之前是移动互联网时代,它的产品形态是APP。在进入AGI时代后,产品形态变为了AI Agent。

未来现有的部分高级程序员写的应用就不再会是App,而是AI Agent了!

其次,在技术层面:面向过程架构 → 面向目标架构 的转变(也称为:软件架构的范式迁移);

比如,在App时代写一个用户系统,需要把整个用户从注册到登录再到注销,一步一步地把整个流程结合if-else把它开发出来。这个生成的过程我们叫做面向过程的架构,需要预定义指令、逻辑和规则

但是,在AI Agent时代,很多情况下不需要把这些指令一个一个地指出来,只需要一句话就行了,比如说提供一个prompt“请帮我完成一个用户系统,它包含用户注册、登录、查询等功能”,然后大模型就会帮你去完成。这个生成的过程我们叫做面向目标的架构,具有目标导向和动态规划的特点,由AI Agent自主生成。

大模型和Agent有啥区别?

Agent会在大模型的推理结果基础之上,使用一些工具(如调用API)完成某个特定的任务,这个技术也被称为Function Calling(函数调用)。

当下大模型的参数量提升AI Agent的理解力和泛化能力,使其能够更好地处理多种任务和上下文信息,这增强了AI代理的自然语言处理能力,从而提供更加个性化、连贯的交互体验,是当下Agent的构建关键!

总结:大模型时代下的 AI Agent = LLM × (规划+记忆+工具+行动)

AI Agent的应用场景通常与特定任务或环境紧密相关。例如,在智能家居系统中,AI Agent可以根据用户的生活习惯和偏好自动调节家庭设备的运行状态。在游戏中,AI Agent能够提供具有挑战性的对手或复杂的游戏环境动态。

Agent架构的核心流程

Agent架构有三个重要的模块:规划 模块(Planning)、执行模块(Action) 和 观察****模块(Observation),如下图所示:

举个例子,假设我们有一个prompt“请用python画一个圆心”。

首先,在规划模块,Agent会将这个需求拆解为三个子项:写Python代码、调用IPython解释器、调用Docker运行环境;

其次,在执行模块,Agent会分别执行拆解的事项,也就是去调用各种工具;

最后,在观察模块,Agent会对每一步的执行结果做观测,如果check完毕没问题,就给到用户最终的答案。如果觉得有问题,比如执行的过程中出现了Timeout之类的错误,就会做一些Retry的操作。如果Retry次数超过了最大重试次数,这时候就可能会把这个进程Kill掉,然后重新进入规划模块重新规划。

在这三个模块或者说能力中,最重要的当属规划模块!

大模型和程序员的关系

(1)目前ChatGPT对程序员到底有哪些实质性的帮助?

第一点:Code Review

ChatGPT能够理解代码,并针对代码给出针对性的建议和优化方案;

第二点:写测试用例、单元测试、集成测试等,这些ChatGPT都很擅长!

第三点:对线上问题的定位和分析

线上问题的各种疑难杂症,ChatGPT都能胜任!

第四点:SQL的翻译

实现两种数据库的SQL语言转换,比如将Oracle的SQL脚本转换成MySQL的SQL脚本。

(2)有了AI编程,还需要程序员吗?

第一,在冯诺依曼架构体系下,程序需要的是确定性计算

第二,由于大模型本身的概率性,目前大模型生成的代码还具备一定的随意性和不确定性

第三,目前大模型更擅长的是一些抽象层次比较低的工作,比如一段代码或一个算法的实现,写一个单元测试等等。而一些抽象层次比较高的工作,比如需求分析、架构设计、领域设计、架构选型等,这些工作反而是大模型不擅长的,而这些工作是比较具备有竞争力的,这恰恰是一些高级程序员以及系统架构师的价值所在。

(3)应用实践AIGC有几层境界?

第一层境界:简单对话;

通过ctrl-c/v出结果,人人都会。

第二层境界:系统掌握Prompt Engineering;

通过系统掌握好提示词工程,真正赋能工作提效。

第三层境界:将AIGC融入业务流程,指挥AIGC完成复杂的任务;

通过掌握AIGC的技能,并完成业务领域知识的深入结合。

第四层境界:拥有自己的大模型;

熟悉大模型的架构原理,通过开源大模型微调,最好能够拥有一定的行业数据壁垒。

第五层境界:参与设计训练大模型;

比如从事ChatGPT等研发工作。

目前,Edison还处于第二层即提示词工程,我们整理了很多针对SDLC(软件开发生命周期)过程中的经典场景的提示词模板来做提效。

那么,你处于哪一层呢?

(4)如何掌握AI大模型开发技能?

第一步:掌握开发AGI时代新应用程序的技能;

比如:大模型应用内核、LangChain开发框架、向量数据库等;

第二步:搞定开发企业级AI Agent的应用技能;

比如:AI Agent、大模型缓存、算力等;

第三步:驾驭开发企业级专有大模型的技能;

比如:RAG、微调等;

第四步:深入应用大模型技术成为开发大师;

比如:大模型预训练、LLMOps等;

小结

大模型应用开发学习实践之路漫漫,我们IT开发者也会逐渐从Application的开发转向Agent的开发的范式的转变,一起加油吧!

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值