Agent零基础入门到精通,看这一篇就够了,AI智能体(Agent)是什么?(非常详细)

文章目录
  • 前言
    • 为什么要学?
    • 什么是大语言模型?
    • 什么是 AI 智能体(Agent)?
    • 智能体核心公式
    • 智能体祛魅
    • 构建智能体的原则
    • 智能体的一些场景
  • 零基础入门AI大模型
    • 1.学习路线图
    • 2.视频教程
    • 3.技术文档和电子书
    • 4.LLM面试题和面经合集
    • 5.免费获取

前言

最近社群里都在研究 AI 智能体,是一个很火的赛道,作为程序员的我,不禁也对智能体很有兴趣,接下来给大家分享一下我在学习智能体的一些感悟和心得,和大家一起成长。

为什么要学?

我们先搞清楚为什么?

最近看到 AI 创新力五问,我们日常生活中有使用 AI 来融入到我们的学习工作流嘛?

值得我们日常反省。

未来企业人才招聘测试AI创新力的五问:

  1. 您是否处于每天习惯使用 AI 的状态?
  2. 请依据 XX 任务为我创作一个提示词工程。
  3. 倘若 AI 给出的答案无法令您满意,您会怎样与 AI 进行交互?
  4. 请为我拆解一个任务的工作流程。
  5. 若要搭建一个 AI 智能体,以使此工作流更简便地完成,您会如何构建?

我理解我们学 AI 核心是为了提升效率,增加竞争力。

什么是大语言模型?

我们在了解智能体之前先了解一下大语言模型(LLM),大语言模型可以接受输入、进行分析或推理,最终进行输出,就好比我们现在常用的 ChatGPT 和 Kimi。

然而,大语言模型无法像人类一样,拥有规划思考能力、运用各种工具与物理世界互动,以及拥有人类的记忆能力。

  • LLM:接受输入、思考、输出
  • 人类:LLM(接受输入、思考、输出)+ 记忆 + 规划 + 工具

什么是 AI 智能体(Agent)?

智能体的英文是 Agent。

Agent 可以翻译为代理人、代理商,可以帮助我们完成一些事情的实体,可以是人或机器。

我们可以理解为一个智能助手,只需要我们给出任务,他就可以自己作出决策并执行的智能助手。

在没有智能体之前,我们先考虑一个场景:我们需要写一篇智能体的科普文

  • 第一步:先打开搜索引擎搜索一些相关书籍相关文章来进行阅读,打开我们的思路。
  • 第二步:参考了大量的书籍和文章后,形成自己的思路,创建文章的大纲。
  • 第三步:针对我们的大纲,对每个段落进行编写,编写过程中不断调整。
  • 第四步:编写之后需要对文章进行排版,对文章进行校对,也需要对前文进行修改。
  • 第五步:写完之后,找朋友帮忙看看,预览一下,看下有什么问题,不合理的地方进行修改。
  • 第六步:冥思苦想一个容易爆火的标题,增加浏览量。

没有智能体前,我们要不就是人工处理,每一步都人工去做,要么写一段提示词,让大模型进行信息整理,写大纲,写章节,起标题,并进行修改。

但是有以下缺点:

  • 我们需要用不同的提示词来完成不同的任务。
  • 大模型没有记忆能力,有上下文限制。
  • 提示词会非常复杂,不利于维护。所以我们引出智能体的概念。

智能体核心公式

我们直接给出智能体的核心公式。
Agent(智能体)=LLM(大模型)+ Planning(规划)+Memory(记忆)+ Tools(工具)

图片

人类:LLM(接受输入、思考、输出)+ 记忆 + 规划 + 工具 我们可以看到智能体越来越像人了,但是没有情感。

我们来解读一下上面这张图,以便大家更好地理解。

  • 记忆(Memory)
    短期记忆:执行任务过程中的上下文,会在子任务的执行过程产生和暂存,在任务完结后被清空。
    长期记忆:长时间保留的信息,一般是指外部知识库。
  • 规划(Planning)
    智能体会把大型任务分解为子任务,并规划执行任务的流程;智能体能体会对任务执行的过程进行思考和反思,从而决定是继续执行任务,或判断任务完结并终止运行。
    简单来说,就是我们上面提到的写作流程,收集、写大纲,写章节等等,俗称工作流。
  • 工具(Tools)
    为智能体配备工具 API,比如:计算器、搜索工具、代码执行器、数据库查询工具等。有了这些工具 API,智能体就可以和物理世界交互,解决实际的问题。

智能体祛魅

什么是祛魅?

打破神秘感,理性思考,智能体没有那么难。

我们再来回头看一下上面的公式。

Agent(智能体)=LLM(大模型)+ Planning(规划)+Memory(记忆)+ Tools(工具)

经过上述的解释,你应该有了一定的了解,

这个公式只是一个智能体的完整体,

而只要是能解决我们的需求,哪怕只用了其中一两项,也可以称之为是智能体,所以不要害怕,勇敢的手搓起来。

核心在于如何提效,如何解决我们的问题。

构建智能体的原则

两个核心原则:

了解自己的需求
了解智能体的能力

智能体的一些场景

文案:爆款标题、文案输出、爆款文章

写作:续写、改写、周报

效率工具:翻译、记账、百科,提效工具

编程助手:代码审查、代码解释

客服:智能回复

生活:什么值得买、旅行规划等等

大家一起探索一下。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

人工智能 Agent 入门是一个广泛的领域,涵盖了多个学科和技术。以下是一些建议,帮助你入门: 1. 学习机器学习基础:了解机器学习的基本概念和算法,包括监督学习、无监督学习和强化学习等。可以开始学习常见的机器学习算法,如线性回归、决策树和神经网络等。 2. 了解强化学习:强化学习是训练智能体在环境中学习最优策略的方法。了解马尔可夫决策过程(MDP)和强化学习算法,如Q-learning和策略梯度等。可以通过阅读相关教材或在线课程进行学习。 3. 编程技能:掌握至少一种编程语言,如Python,它在人工智能领域应用广泛。熟悉常用的机器学习和深度学习库,如Scikit-learn和TensorFlow等。这将帮助你实现和调试机器学习模型。 4. 实践项目:通过实现一些简单的机器学习项目来加深理解和实践。选择一些开源数据集,如Iris花卉数据集或MNIST手写数字数据集,并使用机器学习算法对其进行分类或预测。 5. 扩展知识:了解更高级的深度学习模型和技术,如卷积神经网络(CNN)和循环神经网络(RNN)。探索自然语言处理(NLP)、计算机视觉(CV)和强化学习等领域的应用。 6. 持续学习:跟随最新的研究和发展,参与在线课程、论坛和研讨会。人工智能领域变化迅速,不断学习和更新知识是非常重要的。 这些是入门人工智能 Agent 的一些建议。希望对你有所帮助!如果有更多问题,请随时问我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值