我靠这份LLM面试「押题宝典」拿下offer!47道大厂高频核心题+详细解析,速速收藏!

2025 年的 LLM 领域面试已从单纯的概念记忆转向 “原理理解 + 工程实践 + 前沿视野” 的综合考察。无论是算法工程师、AI 产品经理还是研究员岗位,面试官都更关注候选人对技术本质的思考、问题解决能力及对行业动态的敏感度。以下 47 道题分为五大模块,覆盖面试高频考点,帮你精准查漏补缺。
请添加图片描述

一、基础概念

1. 什么是大型语言模型(LLM)?

大型语言模型是一种基于深度学习的人工智能系统,它在海量文本数据上进行训练,能够理解自然语言并生成相应文本。这些模型通过学习大量文本中的语言模式、语义关系和知识,具备了强大的语言处理能力,例如 GPT - 3、GPT - 4、文心一言、通义千问等。

2. 与传统语言模型相比,LLM 的主要优势是什么?

传统语言模型参数规模较小,训练数据量有限,在处理复杂语言任务时能力不足。LLM 则具有更大的参数规模,如 GPT - 3 拥有 1750 亿个参数,能够学习到更丰富的语言模式和知识。同时,LLM 在海量数据上进行训练,对各种语言现象的理解更为深刻,能够处理如文本生成、复杂问答、代码编写等复杂任务,且在语言生成的流畅性、准确性和上下文理解能力上远超传统语言模型。

3. 简述 LLM 的基本架构,Transformer 在其中起什么作用?

LLM 通常基于 Transformer 架构构建。Transformer 架构包含编码器和解码器,在一些生成式模型(如 GPT 系列)中主要使用解码器部分,而在一些理解和生成兼顾的模型(如 T5)中编码器和解码器都有应用。Transformer 的核心是自注意力机制,它能够让模型在处理文本序列时,关注序列中不同位置的信息,从而更好地捕捉长距离依赖关系和上下文信息。以 “我喜欢苹果,因为它富含维生素” 这句话为例,自注意力机制能使模型在处理 “它” 这个词时,关注到前面的 “苹果”,准确理解 “它” 指代的对象,这对于语言理解和生成的准确性至关重要。Transformer 架构使得 LLM 能够高效处理大规模文本数据,成为当前 LLM 发展的基石。

4. 什么是 tokenization(分词),为什么它对 LLM 很重要?

tokenization 是将文本分割成一个个小的单元(token)的过程,这些单元可以是单词、子词或字符。例如,英文单词 “apple” 可能被当作一个 token,而对于一些复杂词汇或生僻词,可能会被拆分成多个子词 token,如 “hesitate” 可能被拆分为 “hes”“it”“ate”。对于中文,常见的分词方式是按字或词语进行划分。在处理 “我爱中国” 这句话时,按字分词会得到 “我”“爱”“中”“国” 四个 token,按词语分词可能得到 “我”“爱”“中国” 三个 token。

分词对 LLM 很重要,因为 LLM 无法直接处理原始文本,而是处理 token 的数值表示。合理的分词能够将文本转化为模型可理解的输入形式,有效管理词汇表大小,提高计算效率,同时帮助模型更好地处理不同语言的特点以及处理罕见或未知词汇。

5. LLM 中的上下文窗口(context window)是什么,它有什么影响?

上下文窗口指的是 LLM 在处理文本时能够同时考虑的文本长度,即模型能够 “看到” 的前文和后文的范围。例如,一些模型的上下文窗口可能是 2048 个 token。上下文窗口的大小对模型性能有重要影响。较大的上下文窗口使模型能获取更多的上下文信息,在处理长文本或需要长距离依赖的任务时表现更好,如长篇文章的总结、复杂对话的理解等。在总结一篇长文章时,更大的上下文窗口能让模型综合考虑更多段落的内容,生成更全面准确的摘要。然而,更大的上下文窗口也会增加计算资源的需求和计算时间,对硬件性能提出更高要求。如果硬件资源有限,过大的上下文窗口可能导致模型运行效率低下。

二、训练机制

6. LLM 的训练过程通常包含哪些阶段?

LLM 的训练过程主要包括预训练(Pre - training)和微调(Fine - tuning)两个阶段。在预训练阶段,模型在海量的通用文本数据上进行训练,这些数据涵盖了互联网上的大量文本,如网页内容、书籍、论文等。模型通过学习这些数据中的语言模式、语义关系和一般知识,构建起对语言的基本理解和生成能力。在微调阶段,基于预训练好的模型,使用特定任务或领域的小规模数据对模型进行进一步训练,使模型能够适应具体的应用场景,如医疗领域的问答、法律文件的处理等。

7. 预训练数据对 LLM 的性能有何影响,如何选择优质的预训练数据?

预训练数据是 LLM 学习语言知识和模式的基础,其质量和规模对模型性能起着决定性作用。大规模、多样化且高质量的预训练数据能让模型学习到更丰富的语言表达、更广泛的知识领域以及各种语言现象,从而提升模型在各种任务上的表现,使其生成的文本更准确、更合理、更具多样性。在生成故事时,丰富的预训练数据能让模型运用更多不同风格、情节元素来创作。

选择优质预训练数据需要考虑多方面因素。数据来源应广泛且权威,涵盖不同领域、体裁和语言风格的文本,以保证数据的多样性。数据要进行严格的清洗,去除噪声数据,如包含错误格式、乱码、低质量或重复的文本,以提高数据的纯度。数据还应具备时效性,尽量包含最新的信息,以帮助模型学习到当下的语言习惯和知识。

8. 什么是损失函数(Loss Function),在 LLM 训练中常用的损失函数有哪些?

损失函数是用于衡量模型预测结果与真实标签之间差异的函数,它反映了模型在当前参数设置下的表现好坏。在训练过程中,模型通过不断调整参数,使损失函数的值最小化,从而提高模型的准确性。

在 LLM 训练中,常用的损失函数有交叉熵损失函数(Cross - Entropy Loss)。对于语言模型任务,如预测下一个单词,交叉熵损失函数可以很好地衡量模型预测的单词概率分布与真实单词分布之间的差异。假设模型预测下一个单词有 10000 种可能,真实的下一个单词是其中一种,交叉熵损失函数会根据模型预测每种单词的概率以及真实单词的情况,计算出一个损失值,引导模型调整参数,使预测更接近真实情况。在一些有监督的微调任务中,如果是分类问题,也可能使用均方误差损失函数(Mean Squared Error Loss)等,根据具体任务的性质和数据特点选择合适的损失函数。

9. 解释在 LLM 训练中优化器(Optimizer)的作用,常见的优化器有哪些?

优化器在 LLM 训练中负责根据损失函数的反馈,调整模型的参数,使损失函数逐渐减小,从而让模型不断学习和改进。它决定了参数更新的方向和步长。在训练神经网络时,参数的更新公式通常为:参数 = 参数 - 学习率 * 梯度,其中学习率由优化器控制,梯度反映了损失函数对参数的变化率,优化器通过计算梯度并结合自身的策略来确定参数的更新量。

常见的优化器有随机梯度下降(SGD)及其变种,如带动量的 SGD(Momentum SGD)。Momentum SGD 在更新参数时,不仅考虑当前的梯度,还会考虑之前梯度的累积,类似于物体运动时的惯性,能加快收敛速度,避免在一些平坦区域陷入局部最优解。Adagrad、Adadelta、RMSProp 也是常见的优化器,它们能够自适应地调整学习率,根据参数在训练过程中的更新情况动态改变学习率大小。Adam 优化器则结合了 Momentum SGD 和 RMSProp 的优点,既能自适应调整学习率,又能利用梯度的一阶矩和二阶矩信息,在 LLM 训练中被广泛应用,具有较好的收敛性能和泛化能力。

10. LLM 训练中可能面临哪些挑战,如何应对这些挑战?

LLM 训练面临诸多挑战。计算资源需求巨大是一个显著问题,训练大规模模型需要大量的 GPU 或 TPU 等计算芯片,以及高性能的计算集群来支持长时间的运算,这带来了高昂的硬件成本和能源消耗。数据质量问题也不容忽视,如数据存在噪声、偏差、版权问题等,可能影响模型的性能和公平性。模型训练过程中的不稳定性,如梯度消失或梯度爆炸,会导致训练难以收敛或出现异常结果。

应对这些挑战可以采取多种措施。在计算资源方面,可以采用分布式训练技术,将训练任务分配到多个计算节点上并行处理,提高计算效率,同时探索更高效的硬件架构和计算算法,如混合精度训练,利用半精度浮点数运算来减少计算量和内存占用,加速训练过程。对于数据质量问题,需要进行严格的数据清洗和预处理,采用数据增强技术增加数据的多样性和平衡性,同时关注数据的版权合规性。为解决模型训练的不稳定性,可选择合适的初始化方法、调整网络结构,以及采用梯度裁剪等技术来控制梯度的大小,确保训练的稳定进行。

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

三、应用场景

11. LLM 在自然语言处理(NLP)任务中有哪些常见应用?

在文本生成方面,LLM 可用于创作文章、故事、诗歌、代码等。它能够根据给定的主题或提示,生成连贯、逻辑清晰且富有创造力的文本。在智能写作助手场景中,帮助用户快速撰写文案,提高写作效率。在机器翻译领域,LLM 能够将一种自然语言翻译成另一种自然语言,并且在处理复杂句子结构和语义理解上表现出色,提升翻译的准确性和流畅性。在问答系统中,LLM 可以理解用户的问题,并基于其学习到的知识给出准确的回答,广泛应用于智能客服、知识问答平台等场景,为用户提供便捷的信息获取服务。

12. 举例说明 LLM 在内容创作领域的应用及其优势。

在新闻写作方面,LLM 可以根据新闻素材快速生成新闻稿件。在体育赛事报道中,模型能够根据比赛数据、事件描述自动生成赛事新闻,包括比赛过程、关键球员表现、比赛结果分析等内容,大大提高了新闻生产的效率。在小说创作中,作者可以利用 LLM 激发创作灵感,如提供情节构思、人物设定建议等。模型可以根据作者设定的故事背景和主题,生成相关的情节段落,帮助作者拓展故事思路。

LLM 在内容创作领域的优势在于能够快速生成大量文本,满足紧急或大规模的创作需求。它还能提供多样化的创作视角和风格,基于其学习到的海量文本数据,模仿不同作家的写作风格进行创作。而且,LLM 可以不知疲倦地工作,不受时间和精力限制,持续为创作者提供支持。

13. LLM 如何应用于智能客服系统,有哪些需要注意的问题?

在智能客服系统中,LLM 可用于自动回答客户的常见问题。当客户输入问题时,系统将问题发送给 LLM,LLM 根据其学习到的知识和语言理解能力,生成相应的回答。在电商客服场景中,客户询问商品的尺寸、材质、使用方法等问题,LLM 能够快速给出准确的解答。

应用过程中需要注意一些问题。由于 LLM 生成的回答基于其训练数据,可能存在知识过时或不准确的情况,需要结合实时数据和人工审核来确保回答的准确性。对于一些复杂、模糊或涉及情感交互的问题,LLM 可能无法很好地处理,需要人工客服进行干预。还需关注系统的响应速度和稳定性,确保在大量用户咨询时能够及时、稳定地提供服务。同时,要注意保护客户隐私,确保客户信息在处理过程中的安全性。

14. 在医疗领域,LLM 可以发挥哪些作用,存在哪些潜在风险?

在医疗领域,LLM 可用于辅助医生进行疾病诊断。它能够分析患者的症状描述、检查报告等信息,提供可能的疾病诊断建议,帮助医生快速梳理思路,提高诊断效率。在医学研究方面,LLM 可以帮助科研人员快速检索和分析大量的医学文献,总结研究成果和趋势,为新的研究提供参考。在患者教育方面,LLM 能够以通俗易懂的语言向患者解释疾病知识、治疗方案等,提高患者对自身疾病的认知和治疗依从性。

然而,LLM 在医疗领域应用存在潜在风险。由于医疗决策关乎患者的生命健康,LLM 的诊断建议只是参考,不能替代医生的专业判断,其准确性和可靠性仍需进一步验证。医疗数据包含患者大量敏感信息,在使用 LLM 处理医疗数据时,数据隐私和安全问题至关重要,一旦数据泄露,将对患者造成严重损害。医疗领域知识更新迅速,LLM 需要不断更新训练数据以跟上最新的医学研究成果,否则可能给出过时或错误的建议。

15. LLM 在代码生成方面的能力如何,对软件开发行业有哪些影响?

LLM 在代码生成方面展现出了较强的能力。它能够根据自然语言描述生成相应的代码片段,支持多种编程语言,如 Python、Java、JavaScript 等。当开发人员描述 “编写一个函数,实现对列表中所有数字进行求和”,LLM 可以生成对应的 Python 代码:

def sum_list(lst): 
   return sum(lst)

LLM 还能进行代码补全、代码纠错等任务。在软件开发行业,LLM 的出现提高了开发效率,帮助开发人员快速实现一些常见功能,减少重复性劳动。对于新手开发者,LLM 可以作为学习编程的辅助工具,通过示例代码帮助他们理解编程概念和语法。然而,LLM 生成的代码可能存在安全漏洞、不符合最佳实践等问题,需要开发人员进行审查和优化。它可能导致部分开发人员过度依赖,降低自身的编程思考和解决问题的能力,也可能对软件开发行业的就业结构产生一定影响,改变对开发人员技能需求的侧重点。

四、性能评估

16. 如何评估 LLM 的语言生成能力?

评估 LLM 的语言生成能力可以从多个维度进行。首先是生成文本的流畅性,即生成的文本是否符合语言习惯,语法是否正确,句子之间的衔接是否自然。通过人工阅读或使用语言模型的困惑度(Perplexity)指标来衡量,困惑度越低表示生成文本越流畅。生成文本的相关性也很重要,需要判断生成的内容是否与给定的提示或上下文紧密相关,是否偏离主题。可以通过人工评估或计算生成文本与提示文本之间的语义相似度来评估相关性。生成文本的多样性也值得关注,模型应能根据相同提示生成多种不同但合理的文本。可以通过分析生成文本集合中的重复率等指标来评估多样性。还可以从生成文本的准确性和逻辑性方面进行评估,检查生成内容是否存在事实性错误,逻辑是否连贯合理。

17. 在评估 LLM 时,常用的指标有哪些,各自的含义是什么?

常用的评估指标包括 BLEU(bilingual evaluation understudy)指标,主要用于评估机器翻译的质量,它通过比较生成文本与参考翻译文本之间的 n - gram 重叠程度来衡量,值越接近 1 表示生成文本与参考文本越相似,翻译质量越高。ROUGE(Recall - Oriented Understudy for Gisting Evaluation)指标用于文本摘要评估,有 ROUGE - N、ROUGE - L 等不同变体。ROUGE - N 衡量生成摘要与参考摘要中共同出现的 N 元组的召回率,ROUGE - L 基于最长公共子序列计算召回率,值越高表示生成摘要与参考摘要的重合度越高。困惑度(Perplexity)用于衡量语言模型对一个样本的预测能力,它是对生成文本中每个词的概率的几何平均的倒数,困惑度越低,说明模型对该文本的预测越准确,生成文本越自然。MAUVE(Measuring the Gap between Neural Text and Human Text using Divergence Frontiers)指标用于评估生成文本与人类文本的分布差异,反映生成文本的质量和多样性,值越接近 0 表示生成文本与人类文本分布越接近。

18. 除了定量指标,还可以从哪些方面定性评估 LLM?

定性评估 LLM 可从生成文本的创造力方面入手,观察模型是否能生成新颖、独特且富有想象力的内容,如在故事创作中是否能创造出新奇的情节和角色。在语言理解深度上,判断模型是否能理解文本中的隐含语义、双关语、隐喻等复杂语言现象。例如,对于 “他是一只纸老虎” 这样的句子,模型能否理解 “纸老虎” 的隐喻含义。从模型对上下文的处理能力来看,在多轮对话或长文本处理中,模型是否能记住前文信息并在后续生成中合理运用,保持上下文的连贯性和一致性。模型对不同领域知识的掌握和应用能力也可作为定性评估的一方面,观察其在医疗、金融、法律等专业领域的表现,是否能准确运用专业术语和知识进行回答或生成文本。

19. 如何设计一个针对特定任务的 LLM 评估方案?

首先要明确特定任务的目标和要求,在评估用于法律文档处理的 LLM 时,需要确定评估其对法律条款解读的准确性、法律文书生成的规范性等方面。根据任务特点选择合适的评估指标,对于法律文档处理任务,可能会用到准确率、召回率等指标来评估对法律问题回答的正确性,以及使用 ROUGE 等指标评估生成法律文书与参考文书的相似度。准备高质量的评估数据集,该数据集应涵盖任务相关的各种场景和案例,且具有准确的标注或参考标准答案。在法律领域,可以收集真实的法律案例和对应的权威解答作为评估数据。选择合适的评估方法,包括人工评估和自动评估相结合。人工评估可以由领域专家对模型输出进行细致审查,判断其是否符合专业要求;自动评估则利用选定的指标通过程序计算评估结果。还可以设置对比实验,将待评估的 LLM 与其他同类模型或基准模型进行比较,以更直观地了解其性能优势和不足。

20. 如何处理 LLM 在生成内容时出现的偏见问题?

LLM 生成内容出现偏见,可能源于训练数据中本身存在的偏见,如性别、种族、地域等方面的刻板印象。处理该问题,首先需对训练数据进行筛查,去除包含明显偏见的文本数据;其次可通过数据增强技术,补充多样化、无偏见的数据,平衡数据分布。在模型训练后,使用专门的评估工具检测生成内容的偏见倾向,并通过微调等方式优化模型,引导其生成更客观、公正的内容。还可建立人工审核机制,对高风险场景下的输出进行审核与修正。

21. 什么是 LLM 的知识遗忘问题,怎样缓解?

知识遗忘问题指在对 LLM 进行微调时,模型在适应新任务的过程中,遗忘了预训练阶段学习到的通用知识。缓解方法之一是采用多任务学习,在微调时同时进行多个任务的训练,使模型既能学习新任务知识,又能巩固旧知识。也可使用知识蒸馏技术,将预训练模型的知识 “蒸馏” 到微调后的模型中,保留通用知识。此外,弹性权重巩固(EWC)等正则化方法,通过约束重要参数的更新幅度,减少知识遗忘。

22. 简述 LLM 中的注意力机制与多头注意力机制的区别与联系。

注意力机制是 Transformer 架构的核心,它通过计算输入序列中每个位置的权重,使模型在处理文本时能够关注到重要信息,从而捕捉长距离依赖关系。多头注意力机制则是将注意力机制扩展为多个 “头”,每个头独立计算注意力,学习不同的特征表示,然后将多个头的结果进行拼接或加权融合。多头注意力机制相比单一注意力机制,能够从不同角度捕捉文本的语义信息,提取更丰富的特征,增强模型对复杂语义的理解能力。二者联系在于,多头注意力机制是注意力机制的扩展和深化,基于注意力机制的基本原理,进一步提升模型性能。

23. 如何理解 LLM 中的参数共享,它有什么优势?

在 LLM 中,参数共享是指模型的不同部分使用相同的参数。在 Transformer 架构的解码器层中,不同位置的自注意力机制使用相同的参数矩阵。这种方式的优势在于减少模型的参数量,降低计算复杂度和内存占用,提高训练效率。同时,参数共享有助于模型在不同位置学习到一致的特征表示,增强模型的泛化能力,使模型在处理不同长度的文本序列时表现更加稳定。

24. LLM 在零样本学习(Zero-Shot Learning)和少样本学习(Few-Shot Learning)方面是如何实现的?

零样本学习中,LLM 基于预训练阶段学习到的广泛知识和语言理解能力,直接处理从未见过的任务。模型通过对问题的语义理解,结合自身知识储备生成答案。例如,即使模型未针对某个特定小众领域任务进行训练,也能根据对问题的理解和通用知识给出回答。少样本学习则是在任务中仅提供少量的示例,LLM 通过对这些少量示例的学习,快速适应新任务。模型利用示例中的模式、语言结构和逻辑关系,将其应用到新的测试样本上,实现对新任务的处理,这依赖于模型强大的上下文学习能力。

25. 解释 LLM 中的提示工程(Prompt Engineering),它的重要性体现在哪些方面?

提示工程是通过设计和优化输入给 LLM 的提示(Prompt),引导模型生成更符合预期的输出的技术。重要性体现在:一是提高模型输出质量,合理的提示能让模型更准确地理解任务要求,生成更优质、更相关的内容;二是拓展模型应用范围,通过不同的提示设计,可使同一模型适用于多种不同任务;三是控制模型生成方向,避免生成有害、错误或无意义的内容,例如在提示中明确禁止生成虚假信息,引导模型输出真实可靠的内容。

26. LLM 在多语言处理方面面临哪些挑战,如何解决?

挑战包括不同语言的语法结构、词汇表达差异巨大,语言之间的对齐困难,以及低资源语言缺乏足够训练数据等。解决方法有使用多语言预训练数据,涵盖多种语言文本,让模型学习不同语言的共性与差异;采用跨语言迁移学习,将在高资源语言上学习到的知识迁移到低资源语言任务中;构建多语言平行语料库,用于模型的训练和优化,提高语言之间的对齐能力;针对低资源语言,利用数据增强技术扩充数据,或结合无监督学习方法挖掘语言信息。

27. 什么是 LLM 的对抗攻击,常见的攻击方式有哪些?

LLM 的对抗攻击是指攻击者通过精心设计输入,使模型产生错误输出或泄露敏感信息的行为。常见攻击方式包括对抗样本攻击,通过对正常输入添加微小扰动,使模型生成错误结果;提示注入攻击,在输入提示中插入恶意指令,误导模型输出有害内容;数据投毒攻击,在训练数据中混入恶意数据,使模型学习到错误模式,影响模型性能和安全性。

28. 如何防御 LLM 的对抗攻击?

防御对抗攻击可从数据、模型和检测三个层面入手。数据层面,对训练数据进行严格清洗和验证,防止数据投毒;使用对抗训练技术,将对抗样本加入训练数据,让模型学习识别和抵御攻击。模型层面,采用鲁棒性更强的模型架构,增强模型对异常输入的处理能力;对模型进行正则化和剪枝,降低模型的过拟合风险,提高稳定性。检测层面,建立实时检测机制,识别异常输入和输出,一旦发现攻击行为及时采取措施,如阻断输入、重新评估模型输出等。

29. LLM 在推理速度优化方面有哪些技术手段?

在硬件层面,使用高性能的计算芯片,如 GPU、TPU,利用其并行计算能力加速推理;采用硬件加速技术,如 FPGA(现场可编程门阵列)定制化加速推理过程。软件层面,对模型进行量化处理,降低参数的数据精度,减少计算量和内存占用;使用模型压缩技术,如剪枝去除不重要的连接和参数,减小模型规模;优化推理算法,采用高效的计算策略和并行计算框架,如 TensorRT 等推理引擎,提高推理效率。

30. 如何实现 LLM 的可解释性,有哪些常用方法?

实现 LLM 可解释性的常用方法包括基于注意力机制的可视化,通过展示注意力权重,直观呈现模型在处理文本时关注的重点位置,帮助理解模型决策过程;特征归因方法,如 SHAP(SHapley Additive exPlanations)值计算,量化每个输入特征对模型输出的贡献程度;规则提取,从训练好的模型中提取出人类可理解的规则,解释模型的行为逻辑;生成解释文本,让模型在输出结果的同时,生成对该结果的解释说明,增强结果的可理解性。

31. 对比 LLM 与知识图谱在知识表示和应用上的差异。

知识图谱以结构化的方式表示知识,通过节点和边明确描述实体之间的关系,知识表示清晰、准确,便于查询和推理。主要应用于知识问答、语义搜索等场景,能快速定位和提取特定知识。LLM 通过对大量文本的学习,以分布式的方式隐式地表示知识,知识涵盖范围广但相对模糊。应用上,LLM 擅长处理自然语言理解和生成任务,能根据上下文灵活生成文本,但在精确知识查询和复杂推理方面不如知识图谱。二者可结合使用,知识图谱为 LLM 提供结构化知识支撑,LLM 则增强知识图谱的自然语言交互能力。

32. LLM 在对话系统中的多轮对话管理如何实现?

多轮对话管理通过维护对话历史记录,将用户的多轮输入与之前的对话内容结合,作为输入传递给 LLM。模型利用上下文学习能力,理解对话的连贯性和逻辑关系,基于历史信息生成合适的回复。为了更好地管理对话,可采用对话状态跟踪技术,记录对话的当前状态,如用户意图、已提供的信息等;还可结合对话策略,根据对话状态决定何时追问用户细节、何时提供答案或引导对话方向,提升对话的流畅性和有效性。

33. 什么是 LLM 的领域自适应(Domain Adaptation),实现方式有哪些?

领域自适应是指将在通用领域预训练的 LLM,适配到特定领域任务的过程。实现方式有基于数据的方法,收集特定领域的文本数据,对模型进行微调,使模型学习领域特定的语言表达、术语和知识;基于模型的方法,通过调整模型结构或参数,增强模型对特定领域的适应性,如引入领域特定的嵌入层;基于对抗学习的方法,通过构建对抗网络,让模型学习区分通用领域和特定领域数据,同时迫使模型在特定领域上生成与真实数据相似的输出,实现领域自适应。

34. LLM 在处理长文本时,有哪些分块和整合策略?

分块策略包括按固定长度分块,如将长文本按每 512 个 token 为一块进行划分;基于语义分块,利用自然语言处理技术,如句子边界检测、主题分割,将文本按语义段落进行划分。整合策略有简单拼接,将分块处理后的结果直接拼接后输入模型,但可能导致上下文信息丢失;重叠分块,使相邻分块之间有一定重叠部分,保留上下文连贯性;基于注意力机制的整合,在模型处理分块数据后,通过注意力机制重新融合各分块信息,综合考虑不同分块内容生成最终结果。

35. 解释 LLM 中的强化学习从人类反馈(RLHF,Reinforcement Learning from Human Feedback),它的作用是什么?

RLHF 是一种训练 LLM 的方法,通过收集人类对模型输出的反馈,将反馈转化为奖励信号,利用强化学习算法优化模型参数。具体过程为,先让模型生成多个候选输出,由人类标注者对这些输出进行评分或排序,根据评分构建奖励函数,模型根据奖励函数调整参数,使后续生成的输出更符合人类偏好。RLHF 的作用在于使模型生成的内容更符合人类价值观、语言习惯和任务需求,提高输出质量和实用性,减少有害、不恰当内容的生成,增强模型与人类交互的友好性。

36. LLM 在隐私保护方面有哪些技术手段?

数据隐私保护方面,采用联邦学习,让模型在不共享原始数据的情况下,在多个数据拥有方的本地进行训练,仅交换模型参数更新信息;使用差分隐私技术,在数据中添加噪声,保护个体数据隐私,同时不影响模型训练效果。模型隐私保护上,采用同态加密技术,允许在加密数据上进行计算,保证模型推理过程中数据和模型参数的隐私;对模型进行安全多方计算,多方在不泄露各自数据的前提下共同完成模型推理。

37. 如何评估 LLM 在常识推理任务中的表现?

可设计包含各种常识问题的评估数据集,如物理常识、社会常识、生活常识等。通过人工评估,由评估人员判断模型回答是否符合常识逻辑;也可使用自动评估指标,例如计算模型回答与正确答案之间的语义相似度,利用知识库进行事实核查,判断模型回答是否与已知常识知识相符。还可设置对比实验,将 LLM 与其他常识推理模型或基准方法进行比较,分析其在不同类型常识推理任务中的优势和不足。

38. LLM 在跨模态任务(如文本与图像)中的应用现状及挑战是什么?

应用现状是通过多模态预训练,将文本和图像数据联合训练,使模型学习两种模态之间的关联,实现文本生成图像、图像描述生成等任务。如 Stable Diffusion 等模型,能够根据文本描述生成对应的图像。挑战在于不同模态数据的特征表示差异大,难以有效对齐和融合;模型需要学习复杂的跨模态语义映射关系,训练难度高;对于一些模糊或抽象的文本描述,准确生成对应的图像存在困难,且在生成图像的细节和准确性方面有待提高。

39. 简述 LLM 中的持续学习(Continual Learning)概念及实现方法。

持续学习是指 LLM 能够在不断接收新数据、学习新任务的过程中,不遗忘已学知识,同时有效学习新知识的能力。实现方法包括基于正则化的方法,通过约束参数更新,减少对旧知识的遗忘;使用记忆回放技术,存储旧任务的部分数据或特征,在学习新任务时回放这些记忆,巩固旧知识;架构扩展方法,动态增加模型的参数或模块,为新任务学习分配专门的资源,避免新旧任务之间的干扰。

40. LLM 在低资源场景下的优化策略有哪些?

在数据层面,利用数据增强技术,如文本翻译、回译、同义词替换等扩充有限的数据;采用迁移学习,将在高资源场景下预训练的模型迁移到低资源场景,通过少量数据微调适应新任务。模型层面,使用轻量级模型架构,减少模型参数和计算量;采用模型蒸馏,将大型模型的知识迁移到小型模型上,在低资源设备上实现高效推理。算法层面,优化训练算法,使用更高效的优化器,减少训练时间和资源消耗;采用主动学习,选择最有价值的数据进行标注和训练,提高数据利用效率。

41. 如何理解 LLM 中的涌现能力(Emergent Abilities),有哪些典型表现?

涌现能力是指 LLM 在达到一定规模(如参数数量、训练数据量)后,突然表现出在小规模模型中未出现的能力。典型表现包括复杂推理能力,能够处理多步逻辑推理、数学计算等复杂任务;零样本和少样本学习能力显著提升,能够基于少量示例或无示例的情况下完成新任务;对抽象概念和隐喻的理解能力增强,能够理解文本中的深层次语义和情感。这些能力并非通过明确的编程或训练目标获得,而是随着模型规模增长自然涌现。

42. LLM 在推荐系统中的应用模式及优势是什么?

应用模式包括基于文本内容的推荐,利用 LLM 对商品、文章等的文本描述进行理解和分析,计算内容之间的语义相似度,为用户推荐相似内容;基于用户反馈的推荐,通过 LLM 理解用户的评价、提问等自然语言反馈,分析用户需求和偏好,动态调整推荐策略;生成式推荐,让 LLM 根据用户需求生成推荐理由和个性化推荐文案,增强推荐的说服力和用户体验。优势在于能够更好地理解自然语言表达的用户需求和内容信息,处理复杂语义和模糊需求;生成的推荐内容更具个性化和吸引力,提升用户对推荐系统的满意度和使用频率。

43. 对比 LLM 的自回归(Autoregressive)和非自回归(Non-Autoregressive)生成方式。

自回归生成方式按顺序逐个生成 token,基于已生成的 token 预测下一个 token,如 GPT 系列模型。这种方式生成过程简单直观,能够充分利用上下文信息,生成的文本连贯性好,但生成速度较慢,因为每个 token 的生成依赖于前一个 token。非自回归生成方式则一次性生成所有 token,无需顺序依赖,生成速度快,可并行计算。但由于缺乏对后续 token 的信息利用,可能存在生成结果的连贯性和准确性不足的问题,通常需要额外的后处理步骤进行优化。

44. LLM 在教育领域的应用场景及潜在问题有哪些?

应用场景包括个性化学习辅导,根据学生的学习情况和问题,生成针对性的讲解和练习建议;智能作业批改,理解学生的回答内容,进行自动批改和反馈;课程内容生成,辅助教师生成教学资料、课件等。潜在问题有生成内容的准确性和权威性无法保证,可能误导学生;过度依赖 LLM 可能削弱学生的自主思考和探索能力;教育数据涉及学生隐私,使用 LLM 处理时存在数据泄露风险;且不同学生的学习需求差异大,LLM 难以完全满足个性化需求。

45. 什么是 LLM 的模型压缩,常用的压缩技术有哪些?

模型压缩是指通过技术手段减少 LLM 的参数数量、内存占用和计算量,使其更适合在资源受限的环境中部署和运行。常用技术有剪枝,包括结构化剪枝(如删除整个神经元或层)和非结构化剪枝(删除特定的连接或参数),去除不重要的参数;量化,将模型参数的数据类型从高精度(如 32 位浮点数)转换为低精度(如 8 位整数),减少内存占用和计算量;知识蒸馏,将大型教师模型的知识迁移到小型学生模型,使小型模型在保持性能的同时降低复杂度;参数共享,让模型不同部分共享相同参数,减少参数总量。

46. LLM 在金融领域的风险评估中能发挥什么作用?

LLM 可以分析大量的金融文本数据,如企业财报、新闻报道、政策文件等,提取关键信息和风险指标,帮助评估企业的财务状况、市场竞争力和潜在风险。在信用评估方面,理解借款人的申请信息、信用记录等文本内容,辅助判断借款人的信用风险;对金融市场的动态和趋势进行分析,通过解读市场评论、专家观点等文本,预测市场波动和风险事件,为投资决策和风险管理提供支持。

47. 如何解决 LLM 在生成文本时出现的重复问题?

可以在生成过程中设置重复惩罚机制,对已经生成过的 token 赋予较低的生成概率,降低重复出现的可能性;采用多样化的解码策略,如核采样(Nucleus Sampling)和温度调整(Temperature Adjustment),核采样从概率分布中选择概率较高的一部分 token 进行采样,温度调整控制生成的随机性,适当提高温度可增加生成的多样性,减少重复。还可以在生成后对文本进行后处理,使用文本相似度计算等方法检测和删除重复段落或句子。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值