人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning,ML)和深度学习(Deep Learning,DL)之间存在着紧密的关系。
AI是一个广泛的领域,其中包含了机器学习;机器学习是一个更具体的子领域,它专注于通过数据学习;深度学习则是机器学习中的一个前沿技术,使用深度神经网络来实现学习。
图来源于《Python深度学习》
一、人工智能
人工智能(Artificial Intelligence, AI)是什么?AI是一个广泛的领域,旨在使计算机能够像人一样思考、学习和解决问题。它涵盖了多个子领域,包括专家系统、自然语言处理、计算机视觉、机器人技术等。
AI的目标是创造出能够模拟人类智能行为的系统。
“一图 + 一句话”彻底搞懂什么是人工智能。
“人工智能可以被描述为试图将通常由人类完成的智力任务自动化。”
电影《钢铁侠》中的智能助手J.A.R.V.I.S.
二、机器学习
机器学习(Machine Learning,ML)**是什么?ML是AI的一个分支,专注于让计算机通过数据学习并改进其性能。
ML涉及训练算法以识别数据中的模式,并利用这些模式来做出预测或决策。ML可以分为监督学习、无监督学习和强化学习等多种类型。
“一图 + 一句话”彻底搞懂什么是机器学习。
“机器学习通过读取输入数据和答案,自动找出规则以完成任务,而非人类程序员编写规则,它是通过训练而非明确编程实现的。
图来源于《Python深度学习》
三、深度学习
深度学习(Deep Learning,DL)是什么?DL是ML的一个子集,它使用人工神经网络(尤其是深度神经网络)来模拟人脑的学习过程。
DL算法通过多层非线性处理单元(神经元)来学习和表示数据的高级抽象特征。由于深度神经网络在处理大规模、高维数据方面的强大能力,DL在图像识别、语音识别、自然语言处理等领域取得了显著进展。
“一图 + 一句话”彻底搞懂什么是深度学习。
深度学习是从数据中学习表示的一种数学框架,即一种多层的学习数据表示的方法。
图来源于《Python深度学习》
“以图像识别为例,可以将深度神经网络看作多级信息蒸馏(information distillation)过程:信息穿过连续的过滤器,其纯度越来越高(对任务的帮助越来越大)。”
图来源于《Python深度学习》
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈