全网都在扒的DeepSeek团队,是清北应届生撑起一片天

DeepSeek-v3大模型横空出世,以1/11算力训练出超过Llama 3的开源模型,震撼了整个AI圈。

紧接着,“雷军开千万年薪挖DeepSeek研究员罗福莉”的传闻,也使得人们把目光聚焦向DeepSeek的人才

这下不只科技圈,全网都在好奇,连小红书上都有人发帖询问,这究竟是一只怎样的团队?

国际上,也有人把创始人梁文锋的访谈翻译成英语,还加了注释,试图从中寻找这家公司崛起的蛛丝马迹。

量子位整理各种资料发现,DeepSeek团队最大的特点就是年轻

应届生、在读生,特别是来自清北的应届生在其中非常活跃。

他们中的一些人,2024年一边在DeepSeek搞研究,另一边新鲜热乎的博士学位论文刚评上奖。

他们中有的参与了从DeepSeek LLM v1到DeepSeek-v3的全程,有的只是实习了一段时间也做出重要成果。

为DeepSeek提出MLA新型注意力、GRPO强化学习对齐算法等关键创新的,几乎都是年轻人。

DeepSeek核心成员揭秘

2024年5月发布的DeepSeek-V2,是致使这家大模型公司破圈的关键一环。

其中最重要的创新是提出了一种新型注意力,在Transformer架构的基础上,用MLA(Multi-head Latent Attention)替代了传统的多头注意力,大幅减少了计算量和推理显存。

在一众贡献者中,高华佐曾旺丁为MLA架构做出了关键创新。

高华佐非常低调,目前只知道是北大物理系毕业。

另外,在“大模型创业六小强”之一阶跃星辰的专利信息中也可以看到这个名字,暂不确定是否是同一人。

而曾旺丁来自北邮,研究生导师是北邮人工智能与网络搜索教研中心主任张洪刚。

DeepSeek-V2工作中还涉及到了另一项关键成果——GRPO

DeepSeek-V2发布前三个月,DeepSeek-Math问世,其中提出了GRPO(Group Relative Policy Optimization)。

GRPO是PPO的一种变体RL算法,放弃了critic模型,而是从群体得分中估算baseline,显著减少了训练资源的需求。

GRPO在圈内得到广泛关注,另一家国内开源大模型阿里Qwen 2.5的技术报告中也透露用到了GRPO。

DeepSeekMath有三位核心作者是在DeepSeek实习期间完成的工作。

核心作者之一邵智宏是清华交互式人工智能(CoAI)课题组博士生,师从黄民烈教授。

他的研究领域包括自然语言处理、深度学习,特别对如何能构建一个稳健且可扩展的AI系统感兴趣,这个AI系统能利用多样化的技能整合异构信息,并能准确回答各种复杂的自然语言问题。

邵智宏之前还曾在微软研究院工作过。

DeepSeekMath之后,他还参与了DeepSeek-Prover、DeepSeek-Coder-v2、DeepSeek-R1等项目。

另一位核心作者朱琪豪是北大计算机学院软件研究所2024届博士毕业生,受熊英飞副教授和张路教授指导,研究方向为深度代码学习。

据北大计算机学院官方介绍,朱琪豪曾发表CCF-A类论文16篇。在ASE和ESEC/FSE上分别获得ACM SIGSOFT杰出论文奖一次,提名一次。一篇论文进入ESEC/FSE会议同年的引用前三名。

在DeepSeek团队,朱琪豪还基于他的博士论文工作,主导开发了DeepSeek-Coder-V1。

其博士论文《语言定义感知的深度代码学习技术及应用》也入选了2024CCF软件工程专业委员会博士学位论文激励计划。

图源:北京大学计算机学院公众号

还有一位核心作者同样来自北大。

北大博士生Peiyi Wang,受北京大学计算语言学教育部重点实验室穗志方教授指导。

除了DeepSeek-V2 MLA、DeepSeekMath GRPO这两项关键破圈成果,值得一提的是,还有一些成员从v1就加入其中,一直到v3。

代表人物之一代达劢,2024年博士毕业于北京大学计算机学院计算语言所,导师同样是穗志方教授。

图源:北京大学计算机学院公众号

代达劢学术成果颇丰,曾获EMNLP 2023最佳长论文奖、CCL 2021最佳中文论文奖,在各大顶会发表学术论文20篇+。

2024年中国中文信息学会“博士学位论文激励计划”共入选10篇来自中国大陆高校的博士毕业论文,其中就有他的《预训练语言模型知识记忆的机理分析及能力增强关键技术研究》。

以及北大元培学院的王炳宣

王炳宣来自山东烟台,2017年进入北大。

硕士毕业加入DeepSeek,参与了从DeepSeek LLM v1开始的一系列重要工作。

清华这边的代表人物还有赵成钢

赵成钢此前是衡水中学信息学竞赛班成员,CCF NOI2016银牌得主。

之后赵成钢进入清华,大二时成为清华学生超算团队正式成员,三次获得世界大学生超算竞赛冠军。

赵成钢在DeepSeek担任训练/推理基础架构工程师,有英伟达实习经历。

图源:清华新闻网

DeepSeek是一支怎样的团队

这些鲜活的个体,足以引发人们的赞叹。

但还不足以回答最初的问题,DeepSeek到底是一支怎样的团队?有怎样的组织架构?

答案或许还要从创始人梁文锋身上找。

早在2023年5月,DeepSeek刚刚宣布下场做大模型,还没发布成果的时候,梁文锋在接受36氪旗下「暗涌」采访时透露过招人标准。

看能力,而不是看经验。

我们的核心技术岗位,基本以应届和毕业一两年的人为主。

从后面一年多陆续发表的论文贡献名单中也可以看出,确实如此,博士在读、应届以及毕业一两年的成员占很大一部分。

即使是团队leader级别也偏年轻化,以毕业4-6年的为主。

例如领导DeepSeek的后训练团队的吴俣,2019年北航博士毕业、在微软MSRA参与过小冰和必应百科项目。

吴俣博士期间接受北航李舟军教授和MSRA前副院长周明博士的联合培养。

与他师出半个同门的是郭达雅,中山大学印鉴教授与MSRA周明博士联合培养,2023年博士毕业。

2024年7月他加入DeepSeek,主要参与了一系列数学和代码大模型的工作。

郭达雅上学期间还有一项事迹,本科期间在MSRA实习一年里发表两篇顶会论文,他笑称“在刚入学的第三天,就完成了中大博士生的毕业要求。”

除了团队成员年轻化之外,DeepSeek在国内AI公司中突出的特点:非常重视模型算法和硬件工程的配合。

DeepSeek v3论文总共200位作者,并不都是负责AI算法或数据。

有这样一批人从早期的DeepSeek LLM v1到v3一直都在参与,他们更多偏向算力的部分,负责优化硬件。

他们以DeepSeek AI的名义发表了论文**《Fire-Flyer AI-HPC》**,通过软硬件协同设计降低训练成本,解决传统超算架构在AI训练需求上的不足。

Fire-Flyer也就是幻方AI搭建的萤火2号万卡集群,使用英伟达A100 GPU,却做到相比英伟达官方的DGX-A100服务器有成本和能耗的优势。

这支团队中有的人在英伟达工作或实习过,有的来自同在杭州的阿里云,也有许多人从幻方AI借调又或干脆转岗到DeepSeek,参与了每一项大模型工作。

而如此重视软硬件协同的成果,就是以Llama 3 405B的1/11算力,训练出性能更高的DeepSeek-v3了。

最后,我们还发现DeepSeek开源项目中有一个特别的存在,不是语言模型相关工作,却是3D生成相关。

这项成果由清华博士生孙景翔在DeepSeek实习期间,与导师刘烨斌以及DeepSeek成员合作完成。

像这样实习生在DeepSeek做出重要成果的还有中山大学逻辑学专业的辛华剑

他在DeepSeek实习期间参与了用大模型证明数学定理的DeepSeek-Prover,现在在爱丁堡大学读博士。

看过这些例子,再一次回到梁文锋的访谈,或许更能理解这只团队的运作结构。

  • 不做前置的岗位分工,而是自然分工

  • 每个人对于卡和人的调动是不设上限的,每个人可以随时调用训练集群,只要几个人都有兴趣就可以开始一个项目

  • 当一个idea显示出潜力,也会自上而下地去调配资源。

这难免让人想起AI界另一家不可忽视的力量,没错就是OpenAI

同样的用人不看经验,本科生、辍学生只要有能力照样招进来。

同样的重用新人,应届生与00后可以调动资源从无到有研究Sora。

同样的面对潜力方向,整个公司从顶层开始设计布局和资源推动。

DeepSeek,可能是组织形态上最像OpenAI的一家中国AI公司了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值