使用DeepSeek+coze进行账号分析是真的香,小红书一键起号分析+批量下载视频

只用一个简单到离谱的工作流,就能让你轻松拿捏对标账号分析?

是的,你没听错!这不是什么复杂操作,今天就带你走进 Coze 工作流的神奇世界,让你轻松掌握博主的所有视频和账号优缺点,以及参考建议!

你只需要输入博主主页的地址,Coze 工作流就能自动获取博主所有的视频,并对博主账号的优缺点进行详细分析,还会给出参考建议。

整个过程非常简单,只需要几分钟就能完成。

Coze 工作流的分析结果非常全面,不仅能获取博主的所有视频,还能对博主的粉丝增长趋势、互动率、内容风格等进行深入分析。

这样,你就可以轻松了解博主的成功之处和不足之处,为自己的账号发展提供有力的参考。

如果你还在为对标账号分析而烦恼,不妨试试 Coze 工作流,相信它一定会给你带来惊喜!

整个流程非常简单,仅需两步即可完成

第一步:创建工作流

第二步:创建一个智能体

先来说第一步,首先进入到coze的首页,点击工作空间-资源库,然后创建一个新的工作流,工作流名称和工作流描述大家可以自行设置

开始节点设置如下,

变量名input:变量类型选择为String

接下来新增一个小红书笔记获取节点,该插件可以直接在插件市场搜索到,插件名字为:小红书

节点具体设置如下:

参数名cookieStr:这个是小红书的cookie,如果不会获取的话,可以参考文章底部的方式查看

参数名userProfileUrl:用户首页的地址,参数值选择开始节点的input

接下来添加一个循环节点,来获取用户主页内的所有内容,具体参数设置如下

循环类型:可以选择根据数组输出,我这里主要是为了测试,就选择制定循环次数

循环次数:设置5次

参数名var_note_url:参数值选择xhs_auther_notes节点的note_url

循环体内部,新增一个parseLink插件,主要是为了解析视频,插件可以从插件商店获取,插件名字为:视频无水印下载

节点参数设置如下

参数名link:参数值选择循环节点的var_note_url

循环体内部节点voice_to_text,主要作用是将视频和音频转换成文本,插件可以直接从插件商店下载,插件名称为:视频转文本

节点设置如下:

参数名api_key:

获取地址:https://dashscope.console.aliyun.com/apiKey

参数名file_url:选择parseLink节点的video

参数名model:直接写paraformer-v1就可以

循环体内部节点,新增一个文本处理节点,主要是为了将视频地址,文案,博主的信息进行拼接,参数设置如下

参数名String1:参数值为xhs_auther_notes节点的nick_name

参数名String2:参数值为xhs_auther_notes节点的desc

参数名String3:参数值为parseLink节点的video

参数名String4:参数值为voice to text节点的text_result

参数名String5:参数值为xhs_auther_notes节点的fans

字符串拼接:

用户昵称:{{String1}}

用户简介:{{String2}}

粉丝数量:{{String5}}

视频地址:{{String3}}

视频文案:{{String4}}

接下来在循环节点后面新增一个大模型节点,主要是根据信息进行分析,节点设置如下:

输入参数input:选择循环节点的output

系统提示词:大家可以根据需要进行设置,或者按照文末的方式免费领取我设置的提示词

用户提示词:用户输入:{{input}}

输出变量output:变量类型选择String

结束节点设置如下:

输出参数名content:参数值选择大模型节点的output

测试没问题之后,点击右上角发布即可

接下来第二步,创建智能体

回到coze首页,点击工作空间-项目开发,然后创建一个智能体

然后将刚才的工作流添加进来

完成之后,测试一下效果,感觉还可以,就是如果循环比较多的话,相对来说时间会比较长

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### 构建基于DeepSeekCoze的亚马逊平台高效工作流 #### 选择合适的云服务组件 为了确保工作流能够稳定运行,在面对大规模流量冲击时保持性能,建议采用Amazon Web Services (AWS) 提供的高度可扩展的服务组合。考虑到年初针对DeepSeek发生的持续恶意请求事件[^1],安全性成为首要考虑因素。 #### 部署自动化防护机制 利用AWS Shield Advanced作为DDoS保护措施的一部分,可以自动检测并缓解复杂的分布式拒绝服务(DDoS)攻击。这有助于减轻类似之前发生在DeepSeek上的长时间高频率恶意访问带来的压力。 ```python import boto3 shield_client = boto3.client('shield') response = shield_client.create_protection( Name='deepseek-protection', ResourceArn='arn:aws:elasticloadbalancing:us-west-2:account-id:loadbalancer/app/deepseek-load-balancer/ID' ) ``` #### 整合CI/CD管道与监控工具 通过集成CodePipeline、CodeBuild实现持续集成和部署过程中的自动化测试;同时借助CloudWatch设置自定义警报来实时监测应用程序状态变化情况,及时响应潜在风险。 #### 利用容器化技术优化资源利用率 对于像DeepSeek这样的大型应用来说,Docker镜像是理想的选择之一。它不仅简化了环境配置管理还提高了跨不同基础设施之间的移植性。配合ECS(Elastic Container Service),可以根据实际负载动态调整实例数量从而达到最佳性价比。 ```bash docker build -t deepseek-app . docker tag deepseek-app:latest account.dkr.ecr.us-west-2.amazonaws.com/deepseek-app:latest docker push account.dkr.ecr.us-west-2.amazonaws.com/deepseek-app:latest ``` #### 实施微服务体系架构设计原则 借鉴Coze的经验教训,采取领域驱动设计理念划分业务边界清晰的功能模块,并通过API Gateway对外提供统一接入点。这样做的好处是可以独立开发迭代各个部分而不影响整体稳定性,同时也便于后期维护升级操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值