今天我要分享一个超级简单的方法,使用deepseek+coze智能体来解决这个问题。
只需输入目标用户的视频链接,就能自动批量获取该用户的所有视频内容,轻松完成对标账号的采集工作。
无需任何技术基础,也不用花一分钱购买工具,就能轻松解决竞品分析中最耗时的数据采集环节。
是不是听起来很棒?效果如下图,接下来,我就来告诉你具体该怎么操作。
1、整体工作流
1.根据短视频链接,获取用户的基础信息
2.获取用户所有的抖音视频
3.将信息整理为飞书表格的格式化数据
4.将数据添加到飞书表格中
2、详细工作流节点
2.1 根据短视频链接,获取用户的基础信息
我们将使用【视频搜索】插件的douyin_data功能。通过这个功能,我们可以获取用户的ID和昵称:
输入:
- 短视频链接
输出:
- 用户的ID:sec_uid
- 用户昵称:nickname
2.2 获取用户所有的抖音视频
同样,我们继续使用【视频搜索】插件,使用其中的功能get_user_video_all。
使用这个功能可以获取用户的所有抖音视频:
输入:
- api_token
- 用户ID
输出:
- 用户的抖音视频列表
2.3 将信息整理为飞书表格的格式化数据
在这一步,我们需要把收集到的信息转换为飞书表格可接受的数据格式。
下面是处理数据的Python代码:
async defmain(args: Args) -> Output:
params = args.params
aweme_detail = params.get("aweme_detail", {})
aweme_list = params.get("aweme_list", [])
# 1. 从 aweme_detail 中获取作者信息
author_info = aweme_detail.get("author", {})
author_name = author_info.get("nickname", "")
# 2. 循环处理 aweme_list 中的每个视频
result = []
for aweme in aweme_list:
share_info = aweme.get("share_info", {})
statistics = aweme.get("statistics", {})
video_id = statistics.get("aweme_id", "")
title = share_info.get("share_title", "")
link = share_info.get("share_url", "")
digg_count = statistics.get("digg_count", 0)
comment_count = statistics.get("comment_count", 0)
collect_count = statistics.get("collect_count", 0)
share_count = statistics.get("share_count", 0)
# 3. 组装该条视频的数据
item_dict = {
"fields": {
"视频ID": video_id,
"标题": title.strip(), # 去除多余空格或换行
"链接": {
"text": "查看视频",
"link": link.strip(),
},
"点赞数": digg_count,
"评论数": comment_count,
"收藏数": collect_count,
"分享数": share_count,
"作者": author_name
}
}
result.append(item_dict)
return result
其实,完全不需要自己手写代码。只需将需求直接提交给Deepseek,它就能为您生成完整的代码。以下是提示词示例:
帮我写一段python代码,根据入参格式,将入参转换为字典格式。
## 入参的格式如下:
aweme_list:
这里补充样例。。。
aweme_detail:
这里补充样例。。。
## 字典格式如下:
[
{
"fields": {
"视频ID": "7480900309498219839",
"标题": "2025必须AI工具,2025必须AI工具#DeepSeek",
"链接": "https://www.iesdouyin.com/share/video/7480900309498219839",
"点赞数": 51,
"评论数": 2,
"收藏数": 35,
"作者": "AI架构师汤师爷",
}
}
]
2.4 将数据添加到飞书表格中
首先,我们需要创建一个多维表格,设置好表头字段,如下图所示。
表头字段包括视频的所有关键信息:标题、视频链接、点赞数、评论数、收藏数、分享数和作者信息等。并且填写正确的app_token和table_id。
系统将自动把收集到的每条视频信息,准确地写入对应的表格字段中。
3、总结
我们今天分享了如何用deepseek+coze一键获取对标账号的所有视频,并自动存入飞书表格。整个过程非常简单直观。
即使不懂编程也能轻松完成,让你不用再花钱购买采集工具。希望这个小技巧能帮助大家提升工作效率。
我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4
但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!
❗️为什么你必须了解大模型?
1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍
2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰
3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI
(附深度求索BOSS招聘信息)
⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!