生成式AI生态系统实践-案例深度分析 2024

在构建生成式AI生态系统的过程中,众多合作伙伴通过与生态搭建者紧密协作,实现了多方共赢的局面,产生了许多值得借鉴的成功案例。这些案例不仅体现了生态合作对重塑用户体验、引领效率革命以及推动商业模式创新的重要性,而且揭示了共同繁荣的价值理念。

1. 软通动力–合力探索智能场景,联手提升招聘效能

软通动力信息技术(集团)股份有限公司(以下简称“软通动力”) 是中国软件与信息技术服务商,为行业企业提供数字化创新业务服务、通用技术服务和数字化运营服务。

在当今企业人力资源管理日益追求数字化、智能化的时代背景下,软通动力积极拥抱变革,与百度智能云达成了深度战略合作关系,共同探索和实践了一场针对提升传统招聘效率和人才质量的革新运动。

双方强强联手,倾力打造出一款名为“梧桐·招聘”APP的AI原生应用,该应用深度融合了百度智能云领先的AI技术,特别是基于文心大模型算法的智能分析与匹配功能,并融合软通动力在人力资源场景下的know-how。梧桐·招聘APP可实现岗位自动生成、一键生成面试题以及智能人岗匹配,智能化重构招聘场景。

以往繁琐复杂的简历处理工作,常常需要耗费人力资源专员全天甚至更多时间才能完成;而现在,通过人工智能的精准赋能,这一耗时的过程被大大缩短,仅仅在一分钟之内就能完成高质量的简历筛选与岗位匹配,工作效率得到了前所未有的提升。这一重大突破不仅极大地解放了人力资源,使得人力资源团队得以从重复性工作中解脱出来,投入到更具战略意义的人才发展和组织建设工作中,同时也显著降低了企业的招聘成本,提升了招聘质量,从而在根本上促进了整个企业人力资源管理效率及效能的跨越式进步。

1.1 生态构建者贡献的核心价值:

与软通动力合力探索生成式AI和大模型的实际应用场景,通过提供易于使用且性能强大的工具和服务,协助软通动力打造出创新的A驱动招聘解决方案;

利用自身大模型技术的优势,使得梧桐·招聘APP能够简化招聘流程,显著提升招聘效率,减少人力成本支出,释放人力资源潜力,从而积极推动人力资源管理行业的智能化转型进程;提供商业变现渠道,基于AI原生应用商店,为软通动力创新AI应用的商业化推广提供支持。

2. FOSHO自在必得科技–发挥大模型平台效能,合力加速业务能力升级

FOSHO深圳自在必得科技有限公司(以下简称“FOSHO”) 是一家基于AI和大数据技术的智能营销科技公司,通过提供一站式智能出海营销解决方案,专注于品牌全球化发展。FOSHO洞察市场趋势,捕捉到AI技术在营销领域的巨大潜力,与百度智能云结成紧密的战略同盟,依托百度智能云强大的AI技术和生态系统,共同致力于推进海外联盟营销模式的创新升级。

**通过接入百度智能云千帆AI加速器计划,FOSHO对其主打的AI联盟营销云平台“FOSHO AFF”进行了智能化重构与数据智能优化,使其运营效能提升三倍。**在此次合作中,百度智能云扮演了关键的技术支撑角色,向FOSHO提供了包括但不限于大模型在内的多项核心技术,并通过一体化的服务平台,为FOSHO的研发团队铺就了一条通往成功的快车道。得益于此,FOSHO成功研发出AFF Copilot这一海外联盟营销旗舰产品一联盟营销行业中首个实现自然语言交互的智能机器人。它凭借出色的交互能力以及智能营销协作功能,有效地解决了联盟营销中的两大痛点-知识查询困难和数据获取效率低下,极大地改善了品牌全球化的运营效率和效果。

图12 FOSHO AFF平台上的海外联盟营销Copilot

2.1 生态构建者贡献的核心价值:

"集成了AI与大数据的核心技术优势,赋能合作伙伴定制开发高水准的AI应用,降低技术准入门槛,加快产品的商业化步伐,有力支撑企业在全球化竞争格局中抢占先机,赢得市场优势。

**百度智能云千帆大模型平台帮助FOSHO一站式完成数据清洗、训练调用,减少了专业人力的投入和部署成本,加速了企业的AI商业化落地。**百度智能云有配套团队提供指导,解决初创企业专业人力短缺和AI切入慢的难题,而且沟通顺畅,有很多相关活动,可以提升我们专业性的同时拓宽视野,加速企业全面拥抱Al。

3. 创客贴-共创智能内容生产体系,共享高质高产新成果

创客贴(北京艺源酷科技有限公司)成立于2014年,是国内起步较早、发展迅速快的创意内容科技服务商。作为一站式AI视觉创意设计平台,创客贴致力于通过极简的交互工具和海量高品质版权设计素材、模版资源,打破专业软件的复杂繁琐,为企业和个人提供创意设计支持。

作为国内设计与创新行业的佼佼者,创客贴深知把握技术潮流对于企业发展的重要性。如何帮助市场将AIGC能力渗透进工作流中,在降低内容制作成本、提高内容制作效率的同时,提升内容的多样性及质量,是一个关键议题。创客贴通过与百度智能云建立重要战略伙伴关系,一同探索和实践AI技术在内容生产领域的广阔应用。

通过深度整合百度智能云一体化的AI视觉创意设计平台和智能设计工具,创客贴帮助其重要合作伙伴-某知名地产集团在国内率先引入并落地先进的AI设计创新能力,开启全新的智能内容生产时代。在双方的合作框架下,创客贴和百度智能云共同努力,将海报自动生成、模板管理系统以及海报编辑等多个环节完全自动化、智能化,且实现与该地产集团内部素材库的无缝对接。这一系列举措带来了立竿见影的效果:该集团的内容生产效率提高了37%;与此同时,通过对素材的高效复用,降低了16%的成本投入,真正意义上提升了企业面对市场需求快速变化时的反应速度和内容创新能力。

3.1 生态构建者贡献的核心价值:

基于百度智能云生态体系中便捷高效且功能齐全的设计工具和丰富多样的设计资源,帮助创客贴提升内容创作过程中的智能化和规范性,强化内部资源的高效利用和协同作业能力,合力为行业企业和终端用户实现内容创新、成本控制以及业务增值等战略目标。

这些案例有力证明了生态合作在生成式AI领域的巨大潜力和实际价值,也为未来更多跨行业、跨领域的合作实践树立了成功的标杆。通过深化协同创新,各参与方得以共享技术进步带来的红利,共同描绘更加智慧化、人性化的未来图景

4. 总结与思考

近年来,大模型技术飞速发展,从架构演进统一到训练方式转变,再到模型高效适配,大模型技术引起机器学习范式的一系列重要革新,为通用人工智能发展提供了一种新的手段。由单一模态的语言大模型到语言、视觉、听觉等多模态大模型,大模型技术融合多种模态信息,实现多模态感知与统一表示,也将和知识图谱、搜索引擎、博弈对抗、脑认知等技术融合发展,相互促进,朝着更高智能水平和更加通用性方向发展。

与此同时,大模型技术生态蓬勃发展,开源服务与开放生态成为主流趋势,国内外大模型开放平台、开源模型、框架、工具与公开数据集加速大模型技术演进,框架、工具间软硬件协同优化降低大模型开发和应用成本,推动大模型高效训练与部署。

大模型与教育、科学、金融、传媒艺术等专用领域结合拓广通用大模型能力边界,与实体经济的深度融合成为其赋能行业应用关键,正在“大模型”与“小模型”端云协同并进发展格局下重塑生产力工具,变革信息获取方式,改变人类社会生活和生产方式。

随着大模型的应用,其安全问题日益凸显,因而需关注大模型技术发展的内生及伴生风险,关注大模型安全对齐、安全评估技术,发展大模型安全增强技术,加强大模型安全监管措施,确保其“安全、可靠、可控”。

总之,抓紧推动大模型技术研发,尤其是大模型原始技术创新和大模型软硬件生态建设,强化垂直行业数据基础优势,集中国家资源投入大模型发展,同时关注大模型风险监督,彰显人工智能的技术属性和社会属性。

4.1 协同多方合作,共同推动大模型发展

加强学术界和企业界之间合作,是推动大模型生态安全健康发展的重要方面。为了促进校企之间的合作,政府可鼓励建立学术界和企业界之间的合作平台,以促进知识共享和技术交流。包括设立联合研究中心、实验室或合作项目,为学术研究人员和企业工程师提供合作机会和资源。其次,政府可推动学术界和企业界之间的数据共享和协同研究,以增进对大模型训练数据的理解和分析。

共享数据可帮助学术界更好地理解大模型的特性和潜在风险,而企业界可受益于学术界的深入研究和分析,进一步改进算法和模型的安全性。此外,应促进人才培养和交流。通过设立奖学金、建立博士生联合培养计划、鼓励学术界研究人员在企业界进行实地访问等方式,促进校企之间的人才培养和交流、培养具备学术和实践经验的人才,推动大模型安全可持续发展。

在大模型训练过程中,算力紧缺成为一个重要挑战。为应对算力紧缺问题,首先,政府部门可推进建立云计算平台,提供强大算力资源和相应服务,以支持大型模型的安全训练和推理。这将使研究人员和开发者能够灵活地访问所需的计算资源,无需自行购买和维护昂贵硬件设备。其次,政府部门可推动产业和学术界之间的合作,共享算力资源。通过建立合作机制和共享平台,不同实体可共同利用算力资源,减轻各方算力压力。政府可提供资金和奖励措施以促进该合作。

此外,政府可支持推动分布式计算技术的研究与创新。分布式计算技术可将多台计算机或服务器连接在一起,形成计算集群,从而提供更大规模的计算能力。研发分布式计算技术,推动其发展和应用,将有效提高算力的可扩展性和效率。最后,政府可制定激励政策,鼓励企业和研究机构投资和发展与大模型算力相关的技术和设施。包括提供税收优惠、资金支持、知识产权保护等方面的激励措施,以吸引更多的投资和创新。

4.2 建立大模型合规标准和评测平台

相关部门可牵头制定人工智能的合规标准和开发指南,全面覆盖大模型的研发、训练和部署过程中的安全要求和最佳实践,以及对大模型的能力水平进行评估的方法。这样的举措有助于企业和研究机构建立健全的治理机制和风险管理体系,推动行业的规范化发展。通过制定合规标准,可以确保大模型的研发过程符合道德和法律要求。

包括数据采集和使用的透明度和合法性,隐私保护措施,以及对敏感主题和内容的处理原则。同时,开发指南提供训练和部署大型模型时的最佳实践参考,以辅助提升模型可靠性、鲁棒性和公平性。

通过制定大模型能力水平的评测标准和方法,可衡量其在不同任务和领域的表现,以帮助用户和开发者更好地了解和评估大型模型的性能和可靠性,为其选择合适的应用场景提供参考。

评测平台可提供标准化的评测数据集、评估指标和基准结果,以促进模型性能的客观比较和提升。平台应包含多样化的评测任务,涵盖自然语言处理理解、文本生成、代码生成、安全伦理等不同领域和应用,以帮助评估模型在不同任务上的性能表现,推动多领域的研究和应用探索。

此外,应制定一套针对中文背景下大模型评测的规范和方法论,明确评测过程中的数据准备、评估指标、测试方法等细节。这有助于保证评测的可重复性和公正性,并提供统一标准来衡量不同模型的性能和效果。

制定大模型合规标准、建立中文大模型评测平台,将有助于提供公正、可靠的评测环境,推动中文大模型技术发展和应用。同时,评测平台也为学术界、企业界和开发者提供交流和合作平台,促进创新和协同发展。

此外,可制定大模型发展纲要,在大模型核心环节和相关技术上做知识产权布局。在应用生态上,建议组建包括由芯片、云计算、互联网、应用等上下游企业组成的产业发展联盟,鼓励相关企业基于大模型进行数字化转型升级,支持产学研三方协同的大模型研发模式。

4.3 应对大模型带来的安全性挑战

大模型存在大量安全漏洞,迫切需要加大力度进行大模型鲁棒性检测与防御技术研发,还需重视大模型对网络安全的影响。重视大模型的鲁棒性与安全性部署。德国萨尔大学指出现有语言大模型可通过自然语言提示实现灵活调节,这也使其易受对抗性攻击。

使用间接性提示注入的全新的攻击媒介,可使得攻击者能够在没有交互接口的情况下,远程利用集成大模型的应用(如 Bing 的基于 GPT-4 的聊天助手),针对性地向可能检索到的数据注入相关不良提示。

从计算机安全角度出发,设计系统的分类法以研究集成大模型的应用中的潜在漏洞,探讨攻击的传递方式以及可能造成的各种威胁,包括信息搜集、欺诈、入侵、恶意软件、内容操纵、服务可用性降低等。

一系列实验表明,只需简单的提示即可成功控制模型行为,而当前人类设计的过滤技术似乎无法防范这种间接提示注入。

随着大模型功能不断增强,几乎可人为地将所有已知网络安全威胁到新的大模型生态系统中,从而对大模型潜在相关应用部署造成重大隐患。因此,当前研究者应关注新出现的潜在漏洞,以促进该领域研究,并推动当前大模型相关应用更鲁棒与更安全部署。

**重视大模型对网络安全的影响。**传统的 Deepfake 算法(如 GAN)可容易生成看似逼真的虚假内容,进而欺骗人类。尽快 ChatGPT 引入多种控制手段可一定程度上减少不良内容的产生、缓解上述问题,但依然有办法使得该类先进大模型生成错误或极具风险的内容(如设计特定 Prompt 诱发风险输出)。因此,网络安全管理者担心大模型存在被黑客滥用的风险。

4.5 可从以下几方面降低大模型对网络安全带来的不良影响:

第一,网络检测和响应,对于中型和大型企业而言,需要研究全面的解决方案来持续监控网络中的潜在风险活动;

第二,密码安全和防护,对于个人而言,防止数据被盗的第一道防线就是高强度密码,须确保其独特性和难以破译性;

第三,双因素身份验证(2FA),使用 2FA 作身份验证也可增强网络安全性。用户除了输入密码外,还必须输入发送到其手机或电子邮件中的验证码;第四,软件更新,保持操作系统和其他程序的更新,确保其采用最新补丁;第五,杀毒软件,确保手机和设备安装杀毒软件防范在线机器人。

4.6 开展大模型广泛适配,推动大模型技术栈自主可控

鼓励企事业单位使用国产深度学习框架开展大模型训练和推理,加强大模型构建所需基础软件的自主可控性;引导国产芯片厂商基于国产框架开展与大模型的适配和融合优化,打造功能完备的国产人工智能基础设施,推动大模型技术栈自主可控。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

在这里插入图片描述

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值