最近研究了一下大模型相关的内容,决定从互联网的推荐算法转行做大模型推理工程化相关的工作。 所以简单说说我在这个决定中的思考过程。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
1. 推荐算法岗的现状
我本来是一个在大厂做推荐算法的工程师。收入在行业里面算是中游水平, 就这么一直干着似乎也没什么问题。
但是互联网行业的岗位毕竟和公务员和事业单位比,不存在一个工作干一辈子的情况。这个工作能不能继续干完全取决于市场对于这个岗位有没有需求。
但是推荐算法今年的情况就是,流量增长见顶,需求萎靡。
前两年推荐算法很火,是因为4G出来以后有大量的移动端APP(抖音 快手 小红书等) 用户量激增,创作的内容需要通过推荐算法分发给最需要的用户。但是最近几年这几个APP的用户量增长基本见顶了,就算推荐算法推荐的再好,最大的一波用户增长红利已经结束了。
该用app的用户都已经用上了,连身边的老年人都已经在玩这些app了,还能有哪些新用户呢?无非就是让存量用户每天再多玩个1-2分钟就了不起了。相当于市场对于推荐算法真正的需求已经不多了。
所以从招聘市场的反馈来看,目前依然在招推荐算法的公司似乎只有字节和小红书了。只有字节的抖音系app以及小红书还有用户的增长。其他的公司都是缩招,反应到薪资上也是没什么涨幅。类似于阿里系的蚂蚁淘宝等公司,跳槽过去可能都是平薪。整个行业似乎都在卡30%的跳槽涨幅。
对于抖音生活服务,小红书电商这类新业务,整体体量小,基数低,可以去抢一抢阿里和美团的生意,看起来整体业务增长幅度还不错。只要不是算法做的特别差,随着不断通过各种渠道获取新用户,都可以有不错的业务增长,并不一定非得是算法牛逼。但是这类新的有增量的业务在市场上已经很小了。
对于一些老的业务,比如抖音短视频这类成熟型业务,都是各种高端技术以及极端的trick 才能获得不到百分之一, 甚至不到千分之五业务指标收益。说白了就是改革进入了深水区的感觉,再怎么改算法,都是费劲巴拉收益很小。典型的对数曲线增长。从老板的角度来看,再继续招更多的算法工程师也不能带来业务的收益,索性也就不继续招了。
所以传统的推荐算法在流量见顶的大环境下,岗位需求变得萎靡不振。
2. 大模型创造的新需求
今年年初,ChatGPT的横空出世,让人类看到了人工智能的更多可能。ChatGPT就像2016年的AlphaGo 一样,给各类创业者投资者打了一个样,AI原来可以这么牛逼。
虽然说现在的ChatGPT还只能当个查找资料的工具,但是让人们看到了更多底层的技术的巨大进步,预计在未来的几年会颠覆很多行业,只是暂时没有找到特别大的场景。
从英伟达的股价来看,资本是很看好这个新兴的增长点的。所以投了很多资本进去,这正是打工人收割资本家的好机会。现在资本家人傻钱多,此时不割,更待何时。
另外根据最近猎头的反馈,已经有很多的大模型公司都在疯狂招人了。有的原来做推荐算法的猎头甚至都要转行做大模型了。猎头是可以直接反应市场需求的一批人。
技术再牛逼,卖不出去,没有市场就是没用的。 市场需求暴增但是供给跟不上的时候往往是价格最高的时候。反正我就是个打工的,既然都出来卖了,为什么不赶紧把自己卖个好价钱。
别跟我说什么深耕一个领域。纵观互联网这几年的发展,就知道这个行业没有什么值得深耕的。都是走快速扩张,抢占市场的逻辑。除非是特别小众,利润微薄的角落才允许你慢慢深耕。
只要是利润够多,就一个字,快。快速抢占市场是最重要的。
所以啥也别说了,我要去学习去转行了,趁着年轻,刚30,还没有因为35岁被hr把简历直接扔掉。
现在转行,门槛还不算高,还能趁着供给没跟上来多要一些工资。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。