大模型本地部署

1.模型下载

以阿里通义千问模型Qwen-7B-Chat为例,首先需要下载通义千问的Qwen-7B-Chat的模型文件,其下载地址为阿里官方的大语言模型社区–魔搭ModelScope,Qwen-7B-Chat的详细下载地址为:https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary
在这里插入图片描述

点击其中的模型文件,进入模型文件页面,之后点击右侧的下载模型。
在这里插入图片描述
SDK安装安装工具包下载。
在这里插入图片描述
设置模型的下载地址。

from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen-7B-Chat',cache_dir='自己的地址')

在这里插入图片描述

2.环境安装

为了运行之后本地部署的Qwen-7B-Chat模型,我们需要根据要求在Anaconda中安装一个满足模型运行要求的虚拟环境,其官方的配置环境要求如下,这里配置的环境为使用GPU Pytorch的版本。官网的要求如下。
在这里插入图片描述
第一步:安装modelscope可以用来下载模型。

pip install modelscope

第二步:安装通义千问官方说的运行Qwen-7B需要安装的依赖。
在这里插入图片描述

pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed

3.本地部署

官方提供的测试代码:

from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig

# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-7B-Chat", trust_remote_code=True)

# use bf16
# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-7B-Chat", device_map="cpu", trust_remote_code=True).eval()
# use auto mode, automatically select precision based on the device.
model = AutoModelForCausalLM.from_pretrained("qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval()

# Specify hyperparameters for generation. But if you use transformers>=4.32.0, there is no need to do this.
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参

# 第一轮对话 1st dialogue turn
response, history = model.chat(tokenizer, "你好", history=None)
print(response)
# 你好!很高兴为你提供帮助。

# 第二轮对话 2nd dialogue turn
response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
print(response)
# 这是一个关于一个年轻人奋斗创业最终取得成功的故事。
# 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。
# 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。
# 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。
# 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。
# 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。

# 第三轮对话 3rd dialogue turn
response, history = model.chat(tokenizer, "给这个故事起一个标题", history=history)
print(response)
# 《奋斗创业:一个年轻人的成功之路》

运行结果:
在这里插入图片描述

### 豆包大模型本地部署方法与教程 豆包大模型(DouBao Model)作为一种先进的深度学习模型,其本地部署需要结合硬件配置、软件环境以及具体的工具链来完成。以下是关于豆包大模型本地部署的相关信息和教程: #### 1. 硬件需求 在进行本地部署前,需要确保计算机的硬件配置满足运行大模型的需求。尽管大模型训练阶段需要高昂的计算资源,但部署后的推理阶段对硬件的要求相对较低[^1]。然而,为了保证流畅运行,建议使用以下配置: - **CPU**:高性能多核处理器。 - **GPU**:推荐使用 NVIDIA GPU,支持 CUDA 和 cuDNN 的版本。 - **内存**:至少 16GB RAM,推荐 32GB 或更高。 - **存储**:足够的硬盘空间以存储模型文件和缓存数据。 #### 2. 软件环境准备 在本地部署豆包大模型之前,需要安装并配置以下软件环境: - **操作系统**:推荐使用 Linux(如 Ubuntu 20.04+)或 Windows 10/11。 - **Python**:安装 Python 3.8 或更高版本。 - **CUDA 工具包**:如果使用 NVIDIA GPU,需安装对应版本的 CUDA 驱动程序[^2]。 - **依赖库**:安装必要的 Python 库,例如 `transformers`、`torch` 和 `numpy`。 ```bash pip install transformers torch numpy ``` #### 3. 模型管理工具 为了简化模型的部署过程,可以使用专门的模型管理工具,例如 Ollama。Ollama 提供了友好的命令行界面,用于下载、加载和运行大模型[^2]。 ```bash # 安装 Ollama curl https://ollama.ai/install.sh | sh # 下载豆包大模型 ollama pull doubao-model # 运行模型 ollama run doubao-model ``` #### 4. 可视化交互工具 为了增强用户体验,可以集成可视化交互工具,例如 Open-WebUI 或 Chatbox。这些工具提供了图形化的用户界面,方便用户与模型进行交互[^2]。 ```bash # 安装 Open-WebUI git clone https://github.com/open-webui/chat.git cd chat pip install -r requirements.txt # 启动 WebUI python app.py ``` #### 5. 性能优化 为了提高模型的运行效率,可以采取以下措施: - 使用 NVIDIA 驱动和 CUDA 工具包加速推理过程[^2]。 - 对模型进行量化处理(例如 INT8 量化),以减少内存占用和提升速度。 - 配置 GPU 批量大小(Batch Size)以平衡性能和资源消耗。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer # 加载模型和分词器 model = AutoModelForCausalLM.from_pretrained("doubao-model", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("doubao-model") # 推理示例 input_text = "你好,豆包!" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0])) ``` #### 6. 自定义安装路径 如果需要自定义模型的安装路径,可以使用打包工具将相关文件和脚本封装成可执行程序。例如,使用 PyInstaller 将 Python 脚本转换为独立的可执行文件。 ```bash # 安装 PyInstaller pip install pyinstaller # 打包脚本 pyinstaller --onefile your_script.py ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值