国产 AI 搜索接入 DeepSeek,高速,满血,还能联网!

封面由 DeepSeek 给的文字版灵感,由抽象画手特工小宝制作

内容编辑丨特工少女 特工小天

模型测评丨特工小宝 特工小嘉****

在那个年味虽然不浓但班味十足的除夕,我们依然“天涯共此时”。一边研究着 DeepSeek 的技术论文,学习着各路大神的分析,一边分享测试时好玩的 Case 或 bug,感受着深度思考的慢妙。

我当时就预判,在民族情绪和春节假期的加持下,DeepSeek 已经不是出不出圈了,而是全民级的热潮。

果不其然,从大年初二开始,从不知 ChatGPT 为何物甚至还能把 DeepSeek 念成 Desk 的亲朋好友们,开始陆续来询问我到底 DS 是个啥,能用么咋用。

三杯两盏旺仔牛奶之后,我便侃侃而谈。从 NLP 基础科普讲到强化学习,从解释什么是开源到介绍 OpenAI,从 AI 啥都能会扯到失业潮…抑扬顿挫的讲了十多分钟。气氛烘托到了极致,但是在大家下载使用时翻了车!!

“问了半天觉得不聪明发现没打开深度思考”“还没问两句就服务器繁忙”“联网搜索用不了”“问的好多时效性问题回答不了”…

这种痛苦谁懂??给别人安利你特别喜欢的某个东西,吹了一堆到上手的时候却出各种问题。就像把前戏做足了,颅内高潮了,真要实战却哑火了。

这该咋办啊?有人要说了,自己本地部署一个呗。

首先,让如此多的小白,门外汉自己部署是不现实的。其次绝大多数人根本不可能部署满血的 DeepSeek R1,使用的其实是蒸馏后的小参数版本,本质是微调后的 Llama或 Qwen 模型,并不能完全发挥出 DeepSeek 的实力。

那那那,还能有什么妙招?哼哼,端上来吧!

去年年末参加 360 发布会,[下载测试了老周的新产品「纳米 AI 搜索」],而它假期内的一条弹窗可算解了燃眉之急。

纳米 AI 搜索接入了 DeepSeek,还一下子接入了五款,在首页右下角“AI 机器人”一栏就能找到。这里满血版指的是对标官方的没有被降低性能的 671B 的模型。

经过我们的测试,高速版的速度是真的快,无倍速👇

满血版的实测效果也跟官网的一样。

我们还拿它做一些翻译任务,比如昨天的文章,就是用纳米 AI 搜索上的 DeepSeek R1 满血版做的。

对于内容工作者来说,借助 DeepSeek R1,无需各种复杂的提示词框架,只需要清晰的表达需求,就能很好的保留人设和写作风格。强烈建议每次都学习下它的思考过程,经常受益匪浅!

比如暴躁高冷的男友风。

或是可爱猫猫~

纳米 AI 搜索中 DeepSeek 的接入不只是这么简单,它还将“AI 搜索”有机的结合了起来,圆了大家目前无法使用 DeepSeek 联网功能的遗憾。

只要在首页输入你的问题,然后再点击“深入回答”,即可让满血版的 R1 基于基础答案和搜索来的参考资料进行总结思考。也可以在输入的同时,就勾选上“深入回答”,目前会默认使用满血 R1。

对于“特工宇宙是什么”这个提问,拥有联网能力的 DeepSeek 回答的很好。

接着提问个 OpenAI 最新推出的 Agent,Deep Research 是什么?

最终给出的回复也是正确的,并附上了文章参考来源。

再问个热点:老周送车是真的吗?也得到了不错且正确的回答。

对于文章开头提到的亲朋好友们来说,当下纳米 AI 搜索的上手门槛和使用体验,是优于 DeepSeek 官方的。

第一,上手门槛更低。

纳米 AI 搜索会给出用户许多参考提问、联想提问,以及追加提问,引导用户可以提问哪些问题;并且,它让搜索变得像微信一样多模态,像抖音一样低选择门槛。不仅支持文字、音频、视频等输入与输出,还支持拍照等一键搜索。

**第二,体验更丰富多元。
**

纳米 AI 搜索不止整合了 DeepSeek,还融入了国内几乎所有主流模型,无需下载多个 APP,用户可以一站式体验各家大模型。此外,纳米 AI 搜索不止搜索,更是创作,是在已有的搜索信息的基础上,做合理的创造和发挥,比如进行风格化改写、导出,或是生成创意视频。

值得一提的是,纳米 AI 搜索上还有 AI 生成图片和视频的功能。

其中也接入了许多家模型,玩法也非常丰富。

比如这个马斯克变财神爷的 AI 特效。

再比如让办公室的特工 momo 秒变舞狮。

最后,如果你的朋友还在因为 DeepSeek 不断的加载转圈而发愁,不如推荐他先来试试纳米 AI 搜索,在这不仅有 DeepSeek 这样的细糠,还有更多可以探索的宝藏。


在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 如何将AI Engine与DeepSeek进行集成 #### 背景介绍 为了有效地利用AMD的AI引擎来增强DeepSeek的功能,理解两者的工作原理及其接口至关重要。在现代半导体架构设计中,AI引擎通常被用于加速特定类型的计算任务,特别是那些涉及大量矩阵运算的任务[^3]。 #### 技术准备 对于希望将AI引擎与DeepSeek集成的应用开发者而言,首要的是熟悉AI引擎所提供的API和支持的语言特性。这包括但不限于C++、Python以及其他高级编程语言的支持。此外,还需要掌握如何配置环境变量以便于调用底层硬件资源。 #### 实现过程 要实现两者的无缝对接,可以遵循如下方法: 1. **初始化设置** 安装必要的依赖库,并确保开发环境中已安装最新版本的Vitis AI SDK——这是由Xilinx提供的一套专门针对其FPGA产品的深度学习开发工具集。通过该SDK能够方便快捷地部署预训练好的神经网络模型至目标平台之上。 2. **加载模型** 使用Vitis AI提供的Model Zoo下载适用于目标任务场景下的预训练权重文件(.pb),接着借助`vaitrain`命令行工具将其转换为目标格式(.xmodel)以供后续处理使用。 3. **编写适配层代码** 编写一段中间件程序负责接收来自前端应用程序的数据请求并将之转发给后端推理服务;同时还要具备解析返回结果的能力从而反馈给用户界面部分展示出来。以下是简单的伪代码表示形式: ```cpp // C++ Pseudo Code Example void processRequest(const std::string& input_data){ // Send data to AI engine for inference auto result = ai_engine.infer(input_data); // Parse results and send back to client side parseAndSendBack(result); } ``` 4. **性能优化建议** 对于追求极致效率的应用来说,则需进一步探索诸如量化感知训练(Quantization Aware Training,QAT)等先进技术手段来减少模型大小的同时保持较高的预测精度水平不变。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值