有半个月没关注它的GitHub了,直到最近我打开一看
卧槽,这么快(半个月)就从75K Star干到86K Star了?
最关键的是,在最近的1.88.0版本,n8n终于官宣支持MCP了!
而且它不仅支持双向MCP,还支持添加本地(stdio)MCP。
双向MCP:既可以作为MCP客户端,去添加使用各种MCP-Server。又可以作为MCP服务端,发布MCP-Server供其他客户端使用。
MCP-Server目前有两种使用方式,一种是把MCP-Server的工具集成到本地使用,一种是远程调用。而n8n两种都支持了
加之n8n是最强AI Workflow出身,本身就集成了1500+工具和模板。
现在n8n支持MCP,拥抱MCP生态后,更是有上万的MCP-Server可随意接入,我愿称之为最强开源MCP平台。
注意:n8n是平台,而不仅仅是Cusor、Trae、Cherry Studio等 的MCP客户端。
区别在于MCP客户端只是安装在电脑上的客户端软件,只能在本地添加使用MCP-Server,但无法对外提供服务。
而n8n是可部署的Web服务(比如通过docker部署),可以部署到云服务器,不管是制作的MCP-Server,亦或是开发的MCP应用,都可以一键发布到公网,对外提供服务。
好了,话不多说,接下来我们一起看看,在n8n上如何使用MCP。
部署新版n8n
咱们本次还是用docker-compose一键部署
目前n8n的最新版是1.90.2
先创建一个docker-compose.yml文件(空格和缩进要严格按照下面yml文件格式来哦,不能乱改)
docker-compose.yml文件内容如下:
name: 'n8n'
services:
n8n:
image: n8nio/n8n:1.90.2
container_name: n8n
restart: always
ports:
- "5678:5678"
volumes:
- n8n_data:/home/node/.n8n
environment:
- NODE_ENV=production
- N8N_SECURE_COOKIE=false
- N8N_HOST=你的外网IP/域名
# 可以根据需要添加其他环境变量
volumes:
n8n_data:
external: true
接下来就是进入docker-compose.yml文件所在路径的控制台/终端
通过docker-compose up -d 命令 一键部署(或更新)
如下图,就是部署成功了
不过要注意,镜像是在国外,需要开启科学上网。
成功之后直接浏览器访问:
http://127.0.0.1:5678
n8n的双向MCP
n8n在1.88.0版本就支持了向MCP客服端提供MCP-Server工具的功能
同时也支持通过SSE远程使用外部的MCP-Server
我将通过两个例子教大家怎么用
首先是通过SSE远程连接外部MCP-Server(以高德地图MCP-Server为例)
我们先创建一个工作流(如下图)
通过聊天触发,添加一个AI Agent节点,配置好大模型(这里我配置的DeepSeek V3),memory有没有都可以。
注意:n8n里面只有支持funcation call的大模型才能使用MCP
然后点击AI Agent中Tool的加号
添加MCP Client Tool
高德的MCP-Server的SSE地址
https://mcp.amap.com/sse?key=在高德官网上申请的key
获取高德的key
https://console.amap.com/dev/key/app
配置MCP Client Tool
把高德的MCP-Server的SSE地址填上去
就ok啦
我们测试一下
通过chat发送消息(下图),可以看到成功的调用了高德MCP
然后我们制作一个对外提供SSE调用的MCP-Server
向MCP客服端提供MCP-Server工具
另外新建一个工作流
在触发节点选择使用 MCP Server Trigger
可以看到,MCP Server Trigger这里提供可外部访问的SSE地址
接下来咱们只需要把想要提供出去的工具、工作流、Agent等添加到这个MCP Server Trigger节点后就行。
不过我们的n8n目前是部署在本地电脑上的,无法提供外网访问,这时需要用到内网穿透技术。
也没有多复杂,咱们安装一个提供内网穿透功能的软件:贝锐花生壳
https://hsk.oray.com/
安装完毕,打开花生壳,点击增加映射
按照下图进行配置
注意:如果不成功可能需要先去花生壳网页进行实名认证等操作
先在浏览器访问一下这个外网域名,如果能正常访问到本地的n8n就代表内网穿透配置成功!
我们需要再看一下这个外网域名的端口,因为设置的时候是随机端口,所以需要创建出来才知道。
可以看到我随机到的外网端口是29764
然后编辑一下,把内网端口和外网端口改成一样,保存
修改docker-compose.yml配置
重点看下图红框中的配置
N8N_HOST=外网域名
增加- N8N_PORT=29746
把ports的值也都改成29746
PS:因为这里花生壳给的外网端口是随机的,无法指定5678,所以只能把n8n的端口都改了,改成跟花生壳提供的一致。
保存之后,我们再一次在docker-compose.yml所在路径的控制台/终端执行docker-compose up -d,目前是让修改的配置生效
这时再打开MCP Server Trigger,这里显示的SSE地址就变成外网可访问的地址了
点击MCP Server Trigger的加号
这里可以添加任何工具、工作流、Agent等等...
比如咱们可以把刚刚制作的MCP工作流添加上去
调试好之后,记得保存和激活
点开MCP Server Trigger,复制SSE地址
就可以在其他MCP客户端添加使用啦
比如在Cherry Studio中添加使用
n8n集成本地MCP
实际上,n8n官方的MCP,只支持通过SSE调用远程的MCP-Server使用。
要使用本地的MCP-Server,需要用到n8n的社区节点。
点击左下角头像->setting->community nodes
输入n8n-nodes-mcp,点击install(安装)
30秒左右,mcp的社区节点就安装完成了
我们可以在刚才制作的第一个工作流上测试
点击Tool的加号,在右边搜索mcp,可以看到有两个MCP Client Tool节点
其中,后面带有一个小盒子图标的就是刚刚安装的社区MCP节点
点开之后,进入配置页面
点击Create new credential
参考下图的方式进行配置,这里我们添加了一个firecrawl-mcp
配置完,别忘了保存,也可以给这个MCP凭证改写名字
操作我们选择List Tools(列出MCP工具)
然后再添加一个本地MCP,操作选择Execute Tool(执行工具),配置如下图
Tool Name是固定写法(表示让大模型自己选择)
{{ $fromAI('toolname') }}
Tool Parameters也是固定写法(让大模型自己组装参数)
{{ $fromAI('Tool_Parameters', '', 'json') }}
最后测试成功~
一个MCP需要添加两个Tool节点,一个是列出该MCP-Server下所有的工具,另一个是让大模型选择合适的工具执行。
「写在最后」
本文介绍了n8n的MCP使用方式
n8n既可以作为MCP-Server对外提供服务
又可以作为MCP-Client添加SSE远程MCP-Server,或者本地MCP-Server使用。
可以说自由度拉满了,这套组合,可以搭配任意的MCP,实现各种高度定制化的需求。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】