终于等到你,但可能已经晚了。
当国产AI平台Manus宣布开放注册时,国内科技社区的反应却出奇冷静。这个曾经被捧为“中国版DeepSeek”的明星产品,为何在取消邀请码制度后反而遇冷?这场姗姗来迟的开放能否绝地反击,成为挽救Manus的最后救命稻草?
从「一码难求」到「无人问津」
2024年3月,Manus凭借「AI智能体」的概念横空出世。彼时,它的邀请码在黑市被炒到500美元一个,甚至被戏称为“AI界的爱马仕配货”。
然而,短短三个月后,剧情急转直下。尽管其母公司“蝴蝶效应”在今年4月完成7500万美元融资(估值5亿美元),但资本输血并未解决根本问题即用户增长停滞——据海外开发者社区Reddit统计,Manus的日活用户在5月已环比下降37%。
也正因此,本次看似主动出击开放注册,似乎多了几分被动求生的尴尬意味:Manus早期通过邀请码获取用户的成本约为80美元/人,但开放后官网流量成本飙升200%(来自SimilarWeb数据),付费转化率却仅有2.3%,远低于ChatGPT的7%。
更尴尬的是用户注意力早已转移,当Manus还在纠结“开放与否”时,字节跳动Coze和百度心响已通过免费试用、抖音生态导流等策略,迅速收割了中小企业和开发者群体。这也难怪让业内AI开发者感叹:Manus前期饥饿营销透支了太多信任,现在想靠开放注册拉新,但用户已经不和它玩了。
一场「墙外开花墙内冷」的豪赌
据悉,本次Manus开放注册版本并非中文版,而是海外先行,其移动端APP首发于Google Play和苹果海外商店,中文版仍在内测。
从表面来看,这一选择似乎符合市场占领逻辑——欧美市场对AI工具的付费意愿更强(个人用户年均支出约120美元),且OpenAI尚未完全垄断Agent赛道。
但技术短板让Manus的出海决策举步维艰。这主要归因于依赖的通义千问模型,造成其在英文长文本理解测试(HellaSwag基准)中得分仅为GPT-4的72%,实际场景表现则更显吃力:如在客服自动化测试中,Manus处理复杂工单的平均响应时间为8.2秒,错误率15%,而GPT-4仅需3.1秒且错误率低至6%。
更致命的是本土和海外文化隔阂。海外开发者抱怨Manus的API文档更新频率仅为月更(OpenAI保持周更),技术响应速度滞后。为此,甚至有网友吐槽“用中国团队做海外市场,就像让川菜厨子做意大利面——底子不差,但总差一口气”。
大厂的「降维打击」与用户叛逃
当Manus在海外苦战时,国内市场已被大厂用「组合拳」瓜分殆尽。字节跳动Coze依托抖音生态,推出「AI生成短视频脚本」功能,3个月内吸引200万企业用户;百度心响结合搜索大数据,借助在医疗、法律垂类的意图识别准确率达89%的优势,已签约1500家机构客户。
与此同时,价格战更是直接击穿Manus的防线。据了解Manus入门订阅价19美元/月(约137元),而Coze同类功能定价68元/月且支持按日付费;另一位竞争对手百度心响甚至推出“企业免费算力包”,瞄准中小B端客户。
某跨境电商公司CTO坦言:我们测试过Manus的选品分析功能,但它需要人工修正的数据量比心响多30%,价格却贵了一倍,这也是我们选择百度替代方案的主要原因。
用户一系列用脚投票的背后,彰显出Manus产品定位的模糊——既未在技术性能上形成壁垒,又缺乏本土生态支持。
订阅制背后的「双重陷阱」
值得一提的是,Manus自创立开始便将盈利希望押注于订阅制,然而这一模式如今正遭遇双重反噬。
首先对于C端用户而言,Manus套餐(39美元/月,包含3900积分)积分不足需额外购买附加包,而Midjourney则采用「固定价格+无限量」模式。Twitter投票显示,68%的国外付费用户认为“积分过期机制不合理”,甚至有网友调侃:这是在卖健身房会员卡吗?
其次B端市场同样危机四伏。当企业客户要求的私有化部署和定制训练,Manus目前仅支持云端API,且模型微调需额外支付5000美元/次,而心响提供免费初期适配。某金融公司反馈,其“财报摘要”需求从提出到上线耗时3周,而Coze同等服务仅需5天。这些都暴露了Manus的软肋——它既不够便宜,也不够好用。
更深层的危机在于生态缺失。OpenAI通过GPT Store构建了开发者-用户闭环,而Manus尚未建立类似生态。一位开发者表示:我们选择OpenAI,虽然价格相对较贵,但文档齐全、社区活跃,反观Manus的论坛提问,有的三天都没人回。
还剩多少时间窗口?
当前的AI Agent赛道正在上演“大鱼吃小鱼”的残酷游戏,国内外巨头都在纷纷加速布局:如OpenAI任命原Facebook高管Fidji Simo为“应用CEO”,加速商业化闭环;阿里、腾讯则通过投资Agent初创公司,试图复制Manus的路径但避开其失误。
不过内忧外患下的Manus并非没有翻盘的可能。其最大机会和破局点或许在于着力打造“差异化竞争模式”:其一场景极度收窄,放弃“全能型Agent”幻想,专注跨境税务合规、多语言合同审核等高壁垒领域;其二定价动态分层,参照Notion推出针对学生、个体户的灵活套餐;其三生态合纵连横,与Shein、TikTok等出海平台共建定制化工具,将流量劣势转化为场景优势。
现在市场需要的不是又一个ChatGPT模仿者,而是一个真正解决痛点的‘手术刀式’产品。如果Manus不能在6个月内(一般AI创业公司的窗口期不会超过12个月)将英文版挺进全球Agent工具榜TOP10(现排名第27),同时加速中文版落地,资本耐心或将耗尽。
写在最后:
此次Manus的开放注册,与其说是「救命稻草」,不如看作一场倒计时的开始。当资本的光环褪去,市场的检验才真正到来——若能在跨境服务等场景打造出「非你不可」的价值,或许还能背水一战;若继续在技术平庸与定位模糊中徘徊,这场姗姗来迟的开放,终将成为坠落前的最后一块弹射板。
在AI战场,慢一步就是永恒。这句话,正在Manus身上得到残酷印证
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】