2025年程序员转行指南:35岁老程序员的真实经验分享,强烈推荐30+程序员进军大模型领域!

大家好,我叫李华一名10年的资深程序员,在经历了10多年传统软件开发工作后,在35岁时毅然决定投身到大模型这一新兴领域。我的故事希望能为那些正在考虑职业转型的技术人员提供一些启示。

在这里插入图片描述

1. 为什么选择在35岁转行

随着年龄的增长,李华意识到自己所在的行业正经历着翻天覆地的变化。他所从事的传统软件开发领域逐渐被自动化和AI技术所替代,这让他感到自己的技能可能会在未来变得不再具有竞争力。此外,他对人工智能尤其是大模型的兴趣与日俱增,渴望在一个充满挑战和创新的环境中继续成长。李华相信,35岁并不是事业的终点,而是一个重新出发、探索新领域的起点。

2. 为转行做了哪些准备

为了顺利过渡到大模型领域,李华开始了系统的学习和准备:

  • 自我评估:首先,他进行了自我评估,明确了自己对新技术的兴趣点以及现有技能如何应用于新的领域。
  • 在线课程学习:报名参加了多个关于机器学习、深度学习以及自然语言处理的在线课程,并且通过了相关的认证考试。
  • 阅读文献:深入研究最新的学术论文和技术博客,了解当前大模型的研究热点和发展趋势。
  • 项目实践:利用业余时间参与开源项目或个人项目,尝试构建自己的小规模模型,积累实践经验。
  • 网络交流:加入了多个AI和ML的社区论坛,与其他爱好者交流心得,拓宽人脉圈。
3. 转行大模型需要学习哪些新的知识

进入大模型领域,李华认识到需要掌握一系列全新的知识体系:

  • 数学基础:包括线性代数、概率论、统计学等,这些是理解算法背后的原理不可或缺的一部分。
  • 编程语言:Python成为了首选,因为它拥有丰富的库支持如TensorFlow, PyTorch等,对于实现模型训练至关重要。
  • 机器学习理论:从监督学习到无监督学习,再到强化学习,每一种方法都有其应用场景。
  • 深度学习框架:熟悉至少一个主流的深度学习平台,例如PyTorch或TensorFlow,能够有效地设计、训练和优化神经网络。
  • 数据处理:学会使用Pandas、Numpy等工具进行高效的数据预处理和分析。
  • 云计算服务:鉴于大规模模型训练通常需要强大的计算资源,了解云服务平台(如AWS, Azure, Alibaba Cloud)及其提供的GPU实例也非常重要。
4. 转行建议

基于自己的亲身经历,李华给想要转行至大模型领域的同行们提供了以下几点建议:

  • 持续学习:技术更新换代迅速,保持好奇心和求知欲,不断跟进最新的研究成果和技术动态。
  • 动手实践:理论结合实际很重要,不要仅仅停留在书本知识上,要多做实验,勇于尝试。
  • 建立联系:积极参与行业会议、研讨会等活动,结识志同道合的朋友,分享彼此的经验。
  • 心理建设:转行过程中难免会遇到困难和挫折,保持乐观的态度,相信只要坚持就能克服。
  • 职业规划:明确短期和长期目标,制定合理的职业发展路径,确保每一次努力都能朝着既定方向前进。

无论年龄大小,只要有决心和行动力,就能够在新时代找到属于自己的位置。希望他的经验能够帮助更多的人勇敢追梦,开启人生新篇章。

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值