【大模型入门教程】从0开始离线部署私有大模型——离线大模型部署指南

大模型的使用必将包含以下三个阶段:

1. 直接使用,用于提效

2. 使用 API 定制应用程序

3. 离线部署+微调,实现私有数据模型化

第一个阶段已经完成,作为技术者应该关注第二、三阶段。今天我们教大家从0开始离线部署私有大模型,过程十分详细,再菜的鸟都能学的会,记不住的点赞收藏,上机实操下。

1. 环境安装和配置

我们以清华大学开源的 ChatGLM-6B 语言模型为例。ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。

实验使用的环境如下:

Windows11

13700KF

32G内存

RTX 3090 24G显存

ChatGLM-6B 可在最小 6GB 显存运行。如果没有合适的显卡或者想体验完整版,可以购买云服务商的 A100 GPU 服务器试用。以阿里云为例,最便宜的每小时 38 元左右。

2. 安装 Python

Python 官网下载并安装 Python,记得选上“Add python.exe to PATH”。

3. 安装 CUDA

由于 PyTorch 最新只能支持 11.8 的显卡驱动,不能安装最新版 CUDA。

在 Nvidia 官网 下载 11.8 的 CUDA Toolkit Archive。


在这里插入图片描述

4. 安装 PyTorch

在 PyTorch 官网 执行对应版本的安装命令。

5. 安装 git

从 git 官网 下载 git。

6. 部署代码

使用下面git命令Clone 代码:

git clone https://github.com/THUDM

/ChatGLM-6B.git



  

【安装依赖】

  

cd ChatGLM-6B

pip install -r requirements.txt

  




【下载模型】

代码在执行时默认自动下载模型。如果没有使用魔法,你需要手动下载模型。在 清华大学云盘 下载模型,假设下载到 D:\chatglm-6b-models

7. 运行代码

启动 Python

ChatGLM-6B 返回了“你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。”。至此,大语言模型的离线部署就实现了。我们可以发挥我们的聪明才智,让它给我们工作了。

【长文本生成】

让 ChatGLM-6B 为我们生成一篇文章。

经过大约10秒钟后,文章生成。

运行结果看起来还是很不错的。

私有模型离线部署是指将机器学习模型部署到私有环境中,以保证数据安全和隐密性。这种部署方式适用于那些需要高度安全保障的行业,如金融、医疗、法律等。私有模型离线部署也具有很多优势,比如:

首先,私有化部署可以提供更好的数据安全性和隐密性,因为数据存储在本地服务器上,不会上传到云端,从而避免了数据泄露和攻击。

其次,私有化部署可以更好地满足企业定制化的需求,因为可以根据企业的特定需求和业务流程来定制开发模型和系统,提高管理效率和准确性。

此外,私有化部署还可以提高系统的可靠性和稳定性,因为本地服务器可以更好地控制环境和配置,减少外部因素对系统的影响。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值