大模型的使用必将包含以下三个阶段:
1. 直接使用,用于提效
2. 使用 API 定制应用程序
3. 离线部署+微调,实现私有数据模型化
第一个阶段已经完成,作为技术者应该关注第二、三阶段。今天我们教大家从0开始离线部署私有大模型,过程十分详细,再菜的鸟都能学的会,记不住的点赞收藏,上机实操下。
1. 环境安装和配置
我们以清华大学开源的 ChatGLM-6B 语言模型为例。ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。
实验使用的环境如下:
Windows11
13700KF
32G内存
RTX 3090 24G显存
ChatGLM-6B 可在最小 6GB 显存运行。如果没有合适的显卡或者想体验完整版,可以购买云服务商的 A100 GPU 服务器试用。以阿里云为例,最便宜的每小时 38 元左右。
2. 安装 Python
Python 官网下载并安装 Python,记得选上“Add python.exe to PATH”。
3. 安装 CUDA
由于 PyTorch 最新只能支持 11.8 的显卡驱动,不能安装最新版 CUDA。
在 Nvidia 官网 下载 11.8 的 CUDA Toolkit Archive。
4. 安装 PyTorch
在 PyTorch 官网 执行对应版本的安装命令。
5. 安装 git
从 git 官网 下载 git。
6. 部署代码
使用下面git命令Clone 代码:
git clone https://github.com/THUDM
/ChatGLM-6B.git
【安装依赖】
cd ChatGLM-6B
pip install -r requirements.txt
【下载模型】
代码在执行时默认自动下载模型。如果没有使用魔法,你需要手动下载模型。在 清华大学云盘 下载模型,假设下载到 D:\chatglm-6b-models
7. 运行代码
启动 Python
ChatGLM-6B 返回了“你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。”。至此,大语言模型的离线部署就实现了。我们可以发挥我们的聪明才智,让它给我们工作了。
【长文本生成】
让 ChatGLM-6B 为我们生成一篇文章。
经过大约10秒钟后,文章生成。
运行结果看起来还是很不错的。
私有模型离线部署是指将机器学习模型部署到私有环境中,以保证数据安全和隐密性。这种部署方式适用于那些需要高度安全保障的行业,如金融、医疗、法律等。私有模型离线部署也具有很多优势,比如:
首先,私有化部署可以提供更好的数据安全性和隐密性,因为数据存储在本地服务器上,不会上传到云端,从而避免了数据泄露和攻击。
其次,私有化部署可以更好地满足企业定制化的需求,因为可以根据企业的特定需求和业务流程来定制开发模型和系统,提高管理效率和准确性。
此外,私有化部署还可以提高系统的可靠性和稳定性,因为本地服务器可以更好地控制环境和配置,减少外部因素对系统的影响。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓